Two particles are projected with the same initial velocity, one makes an angle \(\theta\) with the horizontal while the other makes an angle \(\theta\) with the vertical. If their common range is \(R\), then the product of their time of flight is directly proportional to:
1. \(R\)
2. \(R^2\)
3. \(\frac{1}{R}\)
4. \(R^{0}\)
If two projectiles, with the same masses and with the same velocities, are thrown at an angle \(60^\circ\) & \(30^\circ\) with the horizontal, then which of the following quantities will remain the same?
1. | time of flight |
2. | horizontal range of projectile |
3. | maximum height acquired |
4. | all of the above |
A particle is projected, making an angle of \(45^{\circ}\)
1. \(\frac{K}{\sqrt{2}}\)
2. \(\frac{K}{2}\)
3. \(2K\)
4. \(K\)
A particle \((A)\) is dropped from a height and another particle \((B)\) is projected in a horizontal direction with a speed of \(5\) m/s from the same height. The correct statement, from the following, is:
1. | Particle \((A)\) will reach the ground first with respect to particle \((B)\). |
2. | Particle \((B)\) will reach the ground first with respect to particle \((A)\). |
3. | Both particles will reach the ground at the same time. |
4. | Both particles will reach the ground at the same speed. |