1. | Acceleration is along \((\text{-}\vec R )\). |
2. | Magnitude of the acceleration vector is \(\frac{v^2}{R}\), where \(v\) is the velocity of the particle. |
3. | Magnitude of the velocity of the particle is \(8\) m/s. |
4. | Path of the particle is a circle of radius \(4\) m. |
A particle moves in a circle of radius \(5\) cm with constant speed and time period \(0.2\pi\) s. The acceleration of the particle is:
1. | \(25\) m/s2 | 2. | \(36\) m/s2 |
3. | \(5\) m/s2 | 4. | \(15\) m/s2 |
A particle moves in the \((x\text-y)\) plane according to the rule \(x = a \sin (\omega t)\) and \(y = a \cos (\omega t)\). The particle follows:
1. | a circular path. |
2. | a parabolic path. |
3. | a straight line path inclined equally to x and y-axes. |
4. | an elliptical path. |