A particle of mass 10g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration, if the kinetic energy of the particle becomes equal to 8x10-4 J by the end of the second revolution after the beginning of the motion?
(1) 0.15 m/s2
(2) 0.18 m/s2
(3) 0.2 m/s2
(4) 0.1 m/s2
In the given figure, \(a=15\) m/s2 represents the total acceleration of a particle moving in the clockwise direction in a circle of radius \(R=2.5\) m at a given instant of time. The speed of the particle is:
1. \(4.5\) m/s
2. \(5.0\) m/s
3. \(5.7\) m/s
4. \(6.2\) m/s
1. | velocity and acceleration both are parallel to \(\overrightarrow{r}.\) |
2. | velocity is perpendicular to \(\overrightarrow{r}\) and acceleration is directed towards to origin. |
3. | velocity is parallel to \(\overrightarrow{r}\) and acceleration is directed away from the origin. |
4. | velocity and acceleration both are perpendicular to \(\overrightarrow{r}.\) |
1. | \(0.15\) m/s2 | 2. | \(0.18\) m/s2 |
3. | \(0.2\) m/s2 | 4. | \(0.1\) m/s2 |