The angle of \(1'\) (minute of an arc) in radian is nearly equal to:
1. \(2.91 \times 10^{-4} ~\mathrm{rad} \)
2. \(4.85 \times 10^{-4} ~\mathrm{rad} \)
3. \(4.80 \times 10^{-6} ~\mathrm{rad} \)
4. \(1.75 \times 10^{-2} ~\mathrm{rad}\)
The angle of \(1^\circ\) (degree) will be equal to:
(Use \(360^\circ=2\pi\) rad)
1. \(1.034\times10^{-3}\) rad
2. \(1.745\times10^{-2}\) rad
3. \(1.524\times10^{-2}\) rad
4. \(1.745\times10^{3}\) rad
Each side of a cube is measured to be \(7.203~\text{m}\). What are the total surface area and the volume respectively of the cube to appropriate significant figures?
1. | \(373.7~\text{m}^2\) and \(311.3~\text{m}^3\) |
2. | \(311.3~\text{m}^2\) and \(373.7~\text{m}^3\) |
3. | \(311.2992~\text{m}^2\) and \(373.7147~\text{m}^3\) |
4. | \(373.7147~\mathrm{m^2}\) and \(311.2992~\text{m}^3\) |
On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is/are not correct.
(a) | \(y = a\sin \left(2\pi t / T\right)\) |
(b) | \(y = a\sin(vt)\) |
(c) | \(y = \left({\dfrac a T}\right) \sin \left({\dfrac t a}\right)\) |
(d) | \(y = a \sqrt 2 \left(\sin \left({\dfrac {2 \pi t} T}\right) - \cos \left({\dfrac {2 \pi t} T}\right)\right)\) |
(Symbols have their usual meanings.)
Choose the correct option:
1. | (a), (c) |
2. | (a), (b) |
3. | (b), (c) |
4. | (a), (d) |
1. | \( {\left[{pA}^{-1} {~T}^1\right]} \) | 2. | \( {\left[{p}^2 {AT}\right]} \) |
3. | \( {\left[{pA}^{-1 / 2} {~T}\right]} \) | 4. | \( {\left[{pA}^{1 / 2} {~T}^{-1}\right]}\) |
Young's modulus of steel is \(1.9 \times 10^{11} ~\text{N/m}^2\). When expressed in CGS units of \(\text{dyne/cm}^2\), it will be equal to: \((1 \mathrm{~N}=10^5 \text { dyne, } 1~ \text{m}^2=10^4 ~\text{cm}^2)\)
1. \( 1.9 \times 10^{10} \)
2. \( 1.9 \times 10^{11} \)
3. \( 1.9 \times 10^{12} \)
4. \( 1.9 \times 10^9\)
The numbers \(2.745\) and \(2.735\) on rounding off to \(3\) significant figures will give respectively,
1. | \(2.75\) and \(2.74\) | 2. | \(2.74\) and \(2.73\) |
3. | \(2.75\) and \(2.73\) | 4. | \(2.74\) and \(2.74\) |
The mass and volume of a body are \(4.237~\text{grams}\) and \(2.5~\text{cm}^3\), respectively. The density of the material of the body in correct significant figures will be:
1. \(1.6048~\text{grams cm}^{-3}\)
2. \(1.69~\text{grams cm}^{-3}\)
3. \(1.7~\text{grams cm}^{-3}\)
4. \(1.695~\text{grams cm}^{-3}\)
The sum of the numbers \(436.32,227.2,\) and \(0.301\) in the appropriate significant figures is:
1. | \( 663.821 \) | 2. | \( 664 \) |
3. | \( 663.8 \) | 4. | \(663.82\) |
A physical quantity is measured and the result is expressed as \(nu\) where \(u\) is the unit used and \(n\) is the numerical value. If the result is expressed in various units then:
1. \(n\propto \mathrm{size~of}~u\)
2. \(n\propto u^2\)
3. \(n\propto \sqrt u\)
4. \(n\propto \frac{1}{u}\)