The number of significant figures in the numbers \(25.12,\) \(2009,\) \(4.156\) and \(1.217\times 10^{-4}\) is:
1. | \(1\) | 2. | \(2\) |
3. | \(3\) | 4. | \(4\) |
In which of the following, the number of significant figures is different from that in the others?
1. | \(2.303~\text{kg}\) | 2. | \(12.23~\text{m}\) |
3. | \(0.002\times10^{5}~\text{m}\) | 4. | \(2.001\times10^{-3}~\text{kg}\) |
The mass and volume of a body are \(4.237~\text{grams}\) and \(2.5~\text{cm}^3\), respectively. The density of the material of the body in correct significant figures will be:
1. \(1.6048~\text{grams cm}^{-3}\)
2. \(1.69~\text{grams cm}^{-3}\)
3. \(1.7~\text{grams cm}^{-3}\)
4. \(1.695~\text{grams cm}^{-3}\)
Which of the following measurements is the most precise?
1. 5.00 mm
2. 5.00 cm
3. 5.00 m
4. 5.00 km
If \(97.52\) is divided by \(2.54\), the correct result in terms of significant figures is:
1. | \( 38.4 \) | 2. | \(38.3937 \) |
3. | \( 38.394 \) | 4. | \(38.39\) |
A thin wire has a length of \(21.7~\text{cm}\) and a radius of \(0.46~\text{mm}\). The volume of the wire to correct significant figures is:
1. | \( 0.15~ \text{cm}^3 \) | 2. | \( 0.1443~ \text{cm}^3 \) |
3. | \( 0.14~ \text{cm}^3 \) | 4. | \( 0.144 ~\text{cm}^3\) |
The decimal equivalent of \(\frac{1}{20} \) up to three significant figures is:
1. | \(0.0500\) | 2. | \(0.05000\) |
3. | \(0.0050\) | 4. | \(5.0 \times 10^{-2}\) |
1. | \(9.98\) m | 2. | \(9.980\) m |
3. | \(9.9\) m | 4. | \(9.9801\) m |
The numbers \(2.745\) and \(2.735\) on rounding off to \(3\) significant figures will give respectively,
1. | \(2.75\) and \(2.74\) | 2. | \(2.74\) and \(2.73\) |
3. | \(2.75\) and \(2.73\) | 4. | \(2.74\) and \(2.74\) |