The dimensional formula of pressure is:
1. | \(\left[MLT^{-2}\right]\) | 2. | \(\left[ML^{-1}T^{2}\right]\) |
3. | \(\left[ML^{-1}T^{-2}\right]\) | 4. | \(\left[MLT^{2}\right]\) |
A physical parameter '\(a\)' can be determined by measuring the parameters \(b\), and using the relation, \(a= \dfrac{b^{\alpha}c^{\beta}}{d^{\gamma}e^{\delta}}.\) If the maximum errors in the measurement of \(b, ~c, ~d,~\text{and}~e\) are \(b_1\%,~c_1\%,~d_1\%~\text{and}~e_1\%\)
1. \((b_1+c_1+d_1+e_1)\%\)
2. \((b_1+c_1-d_1-e_1)\%\)
3. \((\alpha b_1+\beta c_1-\gamma d_1-\delta e_1)\%\)
4. \((\alpha b_1+\beta c_1+\gamma d_1+\delta e_1)\%\)
A light-year is a unit of:
1. | Time | 2. | Mass |
3. | Distance | 4. | Energy |
In \(S= a+bt+ct^2,~S\) is measured in metres and \(t\) in seconds. The unit of \(c\) will be:
1. | none | 2. | \(\text{m}\) |
3. | \(\text{ms}^{-1}\) | 4. | \(\text{ms}^{-2}\) |
If \(u_1\) and \(u_2\) are the units selected in two systems of measurement and \(n_1\) and \(n_2\) are their numerical values, then:
1. | \(n_1u_1=n_2u_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(n_1u_1+n_2u_2=0\) |
3. | \(n_1n_2=u_1u_2\) |
4. | \((n_1+u_1)=(n_2+u_2)\) |
The dimensional formula for impulse is:
1. | \([MLT^{-2}]\) | 2. | \([MLT^{-1}]\) |
3. | \([ML^2T^{-1}]\) | 4. | \([M^2LT^{-1}]\) |
In the relation, \(y=a \cos (\omega t-k x)\), the dimensional formula for \(k\) will be:
1. \( {\left[M^0 L^{-1} T^{-1}\right]} \)
2. \({\left[M^0 L T^{-1}\right]} \)
3. \( {\left[M^0 L^{-1} T^0\right]} \)
4. \({\left[M^0 L T\right]}\)
The percentage errors in the measurement of mass and speed are \(2\%\) and \(3\%\) respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed:
1. | \(11\%\) | 2. | \(8\%\) |
3. | \(5\%\) | 4. | \(1\%\) |
The decimal equivalent of \(\frac{1}{20} \) up to three significant figures is:
1. | \(0.0500\) | 2. | \(0.05000\) |
3. | \(0.0050\) | 4. | \(5.0 \times 10^{-2}\) |
The periods of oscillation of a simple pendulum in an experiment are recorded as 2.63 s, 2.56 s, 2.42 s, 2.71 s, and 2.80 s respectively. The average absolute error will be:
1. 0.1 s
2. 0.11 s
3. 0.01 s
4. 1.0 s