1. | \(\dfrac{1}{100(N+1)} \) | 2. | \(100N\) |
3. | \(10(N+1) \) | 4. | \(\dfrac{1}{10 N}\) |
1. | \(0.02~\text{mm}\) | 2. | \(0.05~\text{mm}\) |
3. | \(0.10~\text{mm}\) | 4. | \(0.20~\text{mm}\) |
When the circular scale of a screw gauge completes \(2\) rotations, it covers \(1\) mm over the pitch scale. The total number of circular scale divisions is \(50\). The least count of the screw gauge in metres is:
1. \(10^{-4}\)
2. \(10^{-5}\)
3. \(10^{-2}\)
4. \(10^{-3}\)
A screw gauge has the least count of \(0.01~\text{mm}\) and there are \(50\) divisions in its circular scale. The pitch of the screw gauge is:
1. | \(0.25\) mm | 2. | \(0.5\) mm |
3. | \(1.0\) mm | 4. | \(0.01\) mm |
The angle of \(1'\) (minute of an arc) in radian is nearly equal to:
1. \(2.91 \times 10^{-4} ~\mathrm{rad} \)
2. \(4.85 \times 10^{-4} ~\mathrm{rad} \)
3. \(4.80 \times 10^{-6} ~\mathrm{rad} \)
4. \(1.75 \times 10^{-2} ~\mathrm{rad}\)
The main scale of a vernier calliper has \(n\) divisions/cm. \(n\) divisions of the vernier scale coincide with \((n-1)\) divisions of the main scale. The least count of the vernier calliper is:
1. \(\dfrac{1}{(n+1)(n-1)}\) cm
2. \(\dfrac{1}{n}\) cm
3. \(\dfrac{1}{n^{2}}\) cm
4. \(\dfrac{1}{(n)(n+1)}\) cm