1. | \(\alpha t / \beta \) | 2. | \(\alpha \beta t \) |
3. | \(\alpha \beta / t \) | 4. | \(\beta t / \alpha\) |
1. | angular momentum |
2. | coefficient of thermal conductivity |
3. | torque |
4. | gravitational constant |
1. | both units and dimensions |
2. | units but no dimensions |
3. | dimensions but no units |
4. | no units and no dimensions |
List-I | List-II | ||
(a) | Gravitational constant (\(G\)) | (i) | \([{L}^2 {~T}^{-2}] \) |
(b) | Gravitational potential energy | (ii) | \([{M}^{-1} {~L}^3 {~T}^{-2}] \) |
(c) | Gravitational potential | (iii) | \([{LT}^{-2}] \) |
(d) | Gravitational intensity | (iv) | \([{ML}^2 {~T}^{-2}]\) |
(a) | (b) | (c) | (d) | |
1. | (iv) | (ii) | (i) | (iii) |
2. | (ii) | (i) | (iv) | (iii) |
3. | (ii) | (iv) | (i) | (iii) |
4. | (ii) | (iv) | (iii) | (i) |
If force \([F]\), acceleration \([A]\) and time \([T]\) are chosen as the fundamental physical quantities, then find the dimensions of energy:
1. \(\left[FAT^{-1}\right]\)
2. \(\left[FA^{-1}T\right]\)
3. \(\left[FAT\right]\)
4. \(\left[FAT^{2}\right]\)
If \(E\) and \(G\), respectively, denote energy and gravitational constant, then \(\dfrac{E}{G}\) has the dimensions of:
1. | \([ML^0T^0]\) | 2. | \([M^2L^{-2}T^{-1}]\) |
3. | \([M^2L^{-1}T^{0}]\) | 4. | \([ML^{-1}T^{-1}]\) |