The mass of a \({}_{3}^{7}\mathrm{Li}\) nucleus is \(0.042\) u less than the sum of the masses of all its nucleons. The binding energy per nucleon of the \({}_{3}^{7}\mathrm{Li}\) nucleus is near:
1. \(4.6\) MeV
2. \(5.6\) MeV
3. \(3.9\) MeV
4. \(23\) MeV
In the nuclear decay given below:
\({ }_Z^A \mathrm X \rightarrow{ }_{Z+1}^A \mathrm Y \rightarrow{ }_{Z-1}^{A-4} \mathrm B \rightarrow{ }_{Z-1}^{A-4} \mathrm B\)
the particles emitted in the sequence are:
1. | \(\beta, \alpha, \gamma \) | 2. | \(\gamma, \beta, \alpha \) |
3. | \(\beta, \gamma, \alpha \) | 4. | \(\alpha, \beta, \gamma\) |
1. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\) |
2. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\) |
3. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E\) |
4. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \) |
1. | \(25.8\) MeV | 2. | \(23.6\) MeV |
3. | \(19.2\) MeV | 4. | \(30.2\) MeV |
The energy equivalent of \(0.5~\text g\) of a substance is:
1. \(4.5\times10^{13}~\text J\)
2. \(1.5\times10^{13}~\text J\)
3. \(0.5\times10^{13}~\text J\)
4. \(4.5\times10^{16}~\text J\)
1. | \(2\) protons only |
2. | \(2\) protons and \(2\) neutrons only |
3. | \(2\) electrons, \(2\) protons, and \(2\) neutrons |
4. | \(2\) electrons and \(4\) protons only |
1. | decreases by \(4\) and the mass number remains the same. |
2. | remains the same but the mass number increases by \(4.\) |
3. | remains the same but the mass number decreases by \(8.\) |
4. | increases but the mass number remains the same. |