The energy required in \(\text{MeV/c}^2 \) to separate \({ }_8^{16} \mathrm{O}\) into its constituents is:
(Given: mass defect for \({ }_8^{16} \mathrm{O}=0.13691~ \text{amu}\))
1. | \(127.5\) | 2. | \(120.0\) |
3. | \(222.0\) | 4. | \(119.0\) |
1. | \(26.7\) MeV | 2. | \(6.675\) MeV |
3. | \(13.35\) MeV | 4. | \(2.67\) MeV |
The energy equivalent of \(0.5~\text g\) of a substance is:
1. \(4.5\times10^{13}~\text J\)
2. \(1.5\times10^{13}~\text J\)
3. \(0.5\times10^{13}~\text J\)
4. \(4.5\times10^{16}~\text J\)
If a proton and anti-proton come close to each other and annihilate, how much energy will be released?
1. | \(1.5 \times10^{-10}~\text{J}\) | 2. | \(3 \times10^{-10}~\text{J}\) |
3. | \(4.5 \times10^{-10}~\text{J}\) | 4. | None of these |
1. | \(510\) KeV | 2. | \(931\) KeV |
3. | \(510\) MeV | 4. | \(931\) MeV |