A nucleus \({ }_{{n}}^{{m}} \mathrm{X}\) emits one \(\alpha\text -\text{particle}\) and two \(\beta\text- \text{particle}\) The resulting nucleus is:
1. | \(^{m-}{}_n^6 \mathrm{Z} \) | 2. | \(^{m-}{}_{n}^{4} \mathrm{X} \) |
3. | \(^{m-4}_{n-2} \mathrm{Y}\) | 4. | \(^{m-6}_{n-4} \mathrm{Z} \) |
The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an:
1. Isobar of a parent.
2. Isomer of a parent.
3. Isotone of a parent.
4. Isotope of a parent.
Two nuclei have their mass numbers in the ratio of \(1:3.\) The ratio of their nuclear densities would be:
1. \(1:3\)
2. \(3:1\)
3. \((3)^{1/3}:1\)
4. \(1:1\)
The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)
An element \(\mathrm{X}\) decays, first by positron emission, and then two \(\alpha\text-\)particles are emitted in successive radioactive decay. If the product nuclei have a mass number \(229\) and atomic number \(89\), the mass number and the atomic number of element \(\mathrm{X}\) are:
1. \(237,~93\)
2. \(237,~94\)
3. \(221,~84\)
4. \(237,~92\)
1. | \(\dfrac{(Z - 13)}{\left(A - Z - 23\right)}\) | 2. | \(\dfrac{\left(Z - 18\right)}{\left(A - 36\right)}\) |
3. | \(\dfrac{\left(Z - 13\right)}{\left(A - 36\right)}\) | 4. | \(\dfrac{\left(Z - 13\right)}{\left(A - Z - 13\right)}\) |
1. | \(1.5\times 10^{17}\) | 2. | \(3\times 10^{19}\) |
3. | \(1.5\times 10^{25}\) | 4. | \(3\times 10^{25}\) |
1. | It may emit \(\alpha\text-\)particle. |
2. | It may emit \(\beta^{+}\) particle. |
3. | It may go for \(K\) capture. |
4. | All of the above are possible. |