The energy equivalent of \(0.5\) g of a substance is:
1. \(4.5\times10^{13}\) J
2. \(1.5\times10^{13}\) J
3. \(0.5\times10^{13}\) J
4. \(4.5\times10^{16}\) J

Subtopic:  Mass-Energy Equivalent |
 62%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

How long can an electric lamp of \(100\) W be kept glowing by fusion of \(2.0\) kg of deuterium? Take the fusion reaction as:
\({}_{1}^{2}\mathrm{H}+{}_{1}^{2}\mathrm{H}\rightarrow {}_{2}^{3}\mathrm{He}+ n + 3.27~\text{MeV}\)
1. \(4.9 \times 10^{4} \text{ years }\) 2. \(2.8 \times 10^{4} \text { years }\)
3. \(3.0 \times 10^{4} \text { years }\) 4. \(3.9 \times 10^{4} \text { years }\)
Subtopic:  Nuclear Energy |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

\(\alpha\text-\)particle consists of:
1.  \(2\) protons only
2. \(2\) protons and \(2\) neutrons only
3. \(2\) electrons, \(2\) protons, and \(2\) neutrons
4. \(2\) electrons and \(4\) protons only
Subtopic:  Types of Decay |
 73%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The binding energy of deuteron is \(2.2\) MeV and that of \({}_{2}^{4}\mathrm{He}\) is \(28\) MeV. If two deuterons are fused to form one \({}_{2}^{4}\mathrm{He}\) then the energy released is:
1. \(25.8\) MeV 2. \(23.6\) MeV
3. \(19.2\) MeV 4. \(30.2\) MeV
Subtopic:  Nuclear Binding Energy |
 83%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If \(M(A,Z)\)\(M_p\) and \(M_n\) denote the masses of the nucleus \({}_{Z}^{A}\mathrm{X}\), proton, and neutron respectively in units of u (\(1\) u = \(931.5\) MeV/c2) and \(BE\) represents its binding energy in MeV, then:
1. \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\)
2. \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\)
3. \(M(A, Z)=ZM_p+(A-Z) M_n-B E\)
4. \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \)
Subtopic:  Nuclear Binding Energy |
 65%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the nuclear decay given below: 
XZAYZ+1ABZ-1A-4BZ-1A-4
the particles emitted in the sequence are:

1. \(\beta, \alpha, \gamma \) 2. \(\gamma, \beta, \alpha \)
3. \(\beta, \gamma, \alpha \) 4. \(\alpha, \beta, \gamma\)
Subtopic:  Types of Decay |
 88%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The mass of a \({}_{3}^{7}\mathrm{Li}\) nucleus is \(0.042\) u less than the sum of the masses of all its nucleons. The binding energy per nucleon of the \({}_{3}^{7}\mathrm{Li}\) nucleus is near:
1. \(4.6\) MeV
2. \(5.6\) MeV
3. \(3.9\) MeV
4. \(23\) MeV

Subtopic:  Nuclear Binding Energy |
 71%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A certain mass of Hydrogen is changed to Helium by the process of fusion. The mass defect in the fusion reaction is \(0.02866\) u. The energy liberated per nucleon is: (Given \(1\) u = \(931\) MeV)
1. \(26.7\) MeV 2. \(6.675\) MeV
3. \(13.35\) MeV 4. \(2.67\) MeV
Subtopic:  Mass-Energy Equivalent |
 50%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energies of the nuclei \(A\) and \(B\) are \(E_a\) and \(E_b\) respectively. If three atoms of the element \(B\) fuse to give one atom of element \(A\) and an energy \(Q\) is released, then \(E_a, E_b\) and \(Q\) are related as:
1. \(E_a-3E_b= Q\)
2. \(3E_b-E_a= Q\)
3. \(E_a+ 3E_b=Q\)
4. \(E_b+ 3E_a=Q\)

Subtopic:  Nuclear Binding Energy |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A nucleus with mass number \(220\) initially at rest emits an \(\alpha\text-\)particle. If the \(Q\) value of the reaction is \(5.5\) MeV, then the kinetic energy of \(\alpha\text-\)particle is:
1. \(4.4\) meV
2. \(5.4\) MeV
3. \(5.6\) MeV
4. \(6.5\) MeV

Subtopic:  Nuclear Binding Energy |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch