1. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\) |
2. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\) |
3. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E\) |
4. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \) |
1. | \(25.8\) MeV | 2. | \(23.6\) MeV |
3. | \(19.2\) MeV | 4. | \(30.2\) MeV |
The energy equivalent of \(0.5\) g of a substance is:
1. \(4.5\times10^{13}\) J
2. \(1.5\times10^{13}\) J
3. \(0.5\times10^{13}\) J
4. \(4.5\times10^{16}\) J
In the nuclear decay given below:
the particles emitted in the sequence are:
1. | \(\beta, \alpha, \gamma \) | 2. | \(\gamma, \beta, \alpha \) |
3. | \(\beta, \gamma, \alpha \) | 4. | \(\alpha, \beta, \gamma\) |
The mass of a \({}_{3}^{7}\mathrm{Li}\) nucleus is \(0.042\) u less than the sum of the masses of all its nucleons. The binding energy per nucleon of the \({}_{3}^{7}\mathrm{Li}\) nucleus is near:
1. \(4.6\) MeV
2. \(5.6\) MeV
3. \(3.9\) MeV
4. \(23\) MeV
1. | \(26.7\) MeV | 2. | \(6.675\) MeV |
3. | \(13.35\) MeV | 4. | \(2.67\) MeV |
1. | \(4.9 \times 10^{4} \text{ years }\) | 2. | \(2.8 \times 10^{4} \text { years }\) |
3. | \(3.0 \times 10^{4} \text { years }\) | 4. | \(3.9 \times 10^{4} \text { years }\) |
1. | \(2\) protons only |
2. | \(2\) protons and \(2\) neutrons only |
3. | \(2\) electrons, \(2\) protons, and \(2\) neutrons |
4. | \(2\) electrons and \(4\) protons only |
A nucleus with mass number \(220\) initially at rest emits an \(\alpha\text-\)particle. If the \(Q\) value of the reaction is \(5.5\) MeV, then the kinetic energy of \(\alpha\text-\)particle is:
1. \(4.4\) meV
2. \(5.4\) MeV
3. \(5.6\) MeV
4. \(6.5\) MeV