In the nuclear reaction: \(\mathrm{X}\left(n,\alpha\right){}_{3}^{7}\mathrm{Li}\) the term \(\mathrm{X}\) will be:
1. \({}_{5}^{10}\mathrm{B}\)
2. \({}_{5}^{9}\mathrm{B}\)
3. \({}_{5}^{11}\mathrm{B}\)
4. \({}_{2}^{4}\mathrm{He}\)

Subtopic:  Types of Decay |
From NCERT
PMT - 2001
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a radioactive decay process, the negatively charged emitted β-particles are:

1. The electrons present inside the nucleus.
2. The electrons produced as a result of the decay of neutrons inside the nucleus.
3. The electrons produced as a result of collisions between atoms.
4. The electrons orbiting around the nucleus.
Subtopic:  Types of Decay |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the reaction \({}_{1}^{2}\mathrm{H}+ {}_{1}^{3}\mathrm{H}\rightarrow {}_{2}^{4}\mathrm{He}+ {}_{0}^{1}\mathrm{n}\)
if the binding energies of \({}_{1}^{2}\mathrm{H}, {}_{1}^{3}\mathrm{H},\) and \({}_{2}^{4}\mathrm{He}\) are respectively \(a,b,\) and \(c\) (in MeV), then the energy in (MeV) released in this reaction is:
1. \(c+a-b\)
2. \(c-a-b\)
3. \(a+b​​​​+c\)
4. \(a+b-c\)

Subtopic:  Nuclear Binding Energy |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000\) kW. The mass decay of \(\mathrm{U}^{235}\) per hour is:
1. \(1\) microgram
2. \(10\) microgram
3. \(20\) microgram
4. \(40\) microgram

Subtopic:  Nuclear Energy |
From NCERT
PMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The mass of \({}_{7}^{15}\mathrm{N}\) is \(15.00011\) amu, mass of \({}_{8}^{16}\mathrm{O}\) is \(15.99492\) amu and \(m_p = 1.00783\) amu. Determine the binding energy of the last proton of \({ }_{8}^{16}\mathrm{O}\).
1. \(2.13\) MeV
2. \(0.13\) MeV 
3. \(10\) MeV 
4. \(12.13\) MeV

Subtopic:  Nuclear Binding Energy |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When a deuterium is bombarded on \({}_{8}^{16}\mathrm{O}\) nucleus, an \(\alpha\text-\)particle is emitted, then the product nucleus is:
1. \({}_{7}^{13}\mathrm{N}\)
2. \({}_{5}^{10}\mathrm{B}\)
3. \({}_{4}^{9}\mathrm{Be}\)
4. \({}_{7}^{14}\mathrm{N}\)

Subtopic:  Types of Decay |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A nuclear reaction along with the masses of the particle taking part in it is as follows;
  \(~~A ~~~~+~~~ B~~~~~ \rightarrow~~~~C ~~+~~~~ D~~~~~ ~~Q~ MeV\\ \small{1.002~~~~~~~~ 1.004 ~~~~~~~~~~~~~1.001~~~~~~~1.003}\\ \small{amu~~~~~~~~~~amu~~~~~~~~~~~~~~amu~~~~~~~~~amu} ~~\)
The energy \(Q\) liberated in the reaction is:
1. \(1.234\) MeV
2. \(0.931\) MeV
3. \(0.465\) MeV
4. \(1.862\) MeV

Subtopic:  Mass-Energy Equivalent |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a fission reaction,
\(^{236}_{92}\mathrm{U}\rightarrow ~^{117}\mathrm{X}~+~^{117}\mathrm{Y}~+~^1_0n~+~^1_0n,\) the binding energy per nucleon of \(\mathrm{X}\) and \(\mathrm{Y}\) is \(8.5\) MeV whereas that of \(^{236}\mathrm{U}\) is \(7.6\) MeV. The total energy liberated will be about:
1. \(2000\) MeV
2. \(200\) MeV
3. \(2\) MeV 
4. \(1\) keV

Subtopic:  Nuclear Binding Energy |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energy per nucleon of deuterium and helium atom is \(1.1\) MeV and \(7.0\) MeV. If two deuterium nuclei fuse to form a helium atom, the energy released is:
1. \(19.2\) MeV
2. \(23.6\) MeV
3. \(26.9\) MeV 
4. \(13.9\) MeV
Subtopic:  Nuclear Binding Energy |
 76%
From NCERT
PMT - 2001
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following is used as a moderator in nuclear reactors? 

1. Plutonium 

2. Cadmium 

3. Heavy water

4. Uranium 

Subtopic:  Nuclear Energy |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch