1. | \(1.5 \times 10^{-23}~\text{kg-m/s}\) |
2. | \(6.6 \times 10^{-24}~\text{kg-m/s}\) |
3. | \(6.6 \times 10^{-44}~\text{kg-m/s}\) |
4. | \(2.2 \times 10^{-52}~\text{kg-m/s}\) |
Which of the following figures represents the variation of the particle momentum and the associated de-Broglie wavelength?
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. |
![]() |
1. | \(\frac{h}{\sqrt{m k T}}\) | 2. | \(\frac{h}{\sqrt{3 m k T}}\) |
3. | \(\frac{2 h}{\sqrt{3 m k T}}\) | 4. | \(\frac{2 h}{\sqrt{m k T}}\) |
1. | Equal to \(c\), the speed of light in vacuum. |
2. | Greater than \(c\). |
3. | Less than \(c\). |
4. | Tending to infinity. |
1. | decrease by \(2\) times |
2. | decrease by \(4\) times |
3. | increase by \(4\) times |
4. | increase by \(2\) times |
What will be the percentage change in the de-Broglie wavelength of the particle if the kinetic energy of the particle is increased to \(16\) times its previous value?
1. \(25\)
2. \(75\)
3. \(60\)
4. \(50\)
An electron of mass \(m\) with an initial velocity \(\overrightarrow v= v_0\hat i\)\( ( v_o > 0 ) \) enters in an electric field \(\overrightarrow E = -E_0 \hat i\) \((E_0 = \text{constant}>0)\) at \(t=0.\) If \(\lambda_0,\)
1. \(\frac{\lambda_0}{\left(1+ \frac{eE_0}{mv_0}t\right)}\)
2. \(\lambda_0\left(1+ \frac{eE_0}{mv_0}t\right)\)
3. \(\lambda_0 t\)
4. \(\lambda_0\)
If alpha, beta and gamma rays carry the same momentum, which has the longest wavelength?
1. | Alpha rays | 2. | Beta rays |
3. | Gamma rays | 4. | None, all have same wavelength |
Waves are associated with matter only:
1. | When it is stationary. |
2. | When it is in motion with the velocity of light only. |
3. | When it is in motion with any velocity. |
4. | None of the above. |