1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
Statement I: | The de Broglie wavelength associated with a material particle depends on its charge and nature. |
Statement II: | The wave nature of particles in sub-atomic domain is significant and measurable. |
1. | Both Statement I and Statement II are correct. |
2. | Both Statement I and Statement II are incorrect. |
3. | Statement I is correct but Statement II is incorrect. |
4. | Statement I is incorrect but Statement II is correct. |
1. | 2. | ||
3. | 4. |
The de-Broglie wavelength of the thermal electron at \(27^\circ \text{C}\) is \(\lambda.\) When the temperature is increased to \(927^\circ \text{C},\) its de-Broglie wavelength will become:
1. \(2\lambda\)
2. \(4\lambda\)
3. \(\frac\lambda2\)
4. \(\frac\lambda4\)
An electromagnetic wave of wavelength \(\lambda\) is incident on a photosensitive surface of negligible work function. If '\(m\)' is the mass of photoelectron emitted from the surface and \(\lambda_d\) is the de-Broglie wavelength, then:
1. | \( \lambda=\left(\frac{2 {mc}}{{h}}\right) \lambda_{{d}}^2 \) | 2. | \( \lambda=\left(\frac{2 {h}}{{mc}}\right) \lambda_{{d}}^2 \) |
3. | \( \lambda=\left(\frac{2 {m}}{{hc}}\right) \lambda_{{d}}^2\) | 4. | \( \lambda_{{d}}=\left(\frac{2 {mc}}{{h}}\right) \lambda^2 \) |
An electron is accelerated from rest through a potential difference of \(V\) volt. If the de Broglie wavelength of an electron is \(1.227\times10^{-2}~\text{nm}.\) What will be its potential difference?
1. \(10^{2}~\text{V}\)
2. \(10^{3}~\text{V}\)
3. \(10^{4}~\text{V}\)
4. \(10^{5}~\text{V}\)
An electron is accelerated through a potential difference of \(10,000~\text{V}\). Its de-Broglie wavelength is, (nearly):
\(\left(m_e = 9\times 10^{-31}~\text{kg}\right )\)
1. \(12.2~\text{nm}\)
2. \(12.2\times 10^{-13}~\text{m}\)
3. \(12.2\times 10^{-12}~\text{m}\)
4. \(12.2\times 10^{-14}~\text{m}\)