1. | \(4.4~\text{eV}\) | 2. | \(7.103\times10^{-15}~\text{J}\) |
3. | \(1.9~\text{eV}\) | 4. | \(4.60~\text{eV}\) |
1. | \(\dfrac{3}{2} \nu\) | 2. | \(2\nu\) |
3. | \(3\nu\) | 4. | \(\dfrac{2}{3} \nu\) |
1. | \(h\nu_0\) | 2. | \(2h\nu_0\) |
3. | \(3h\nu_0\) | 4. | \(4h\nu_0\) |
When the light of frequency \(2\nu_0\) (where \(\nu_0\) is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is \(v_1.\) When the frequency of the incident radiation is increased to \(5\nu_0,\) the maximum velocity of electrons emitted from the same plate is \(v_2.\) What will be the ratio of \(v_1\) to \(v_2?\)
1. | \(1:2\) | 2. | \(1:4\) |
3. | \(4:1\) | 4. | \(2:1\) |
The photoelectric threshold wavelength of silver is \(3250\times 10^{-10}~\text{m}.\) What will be the velocity of the electron ejected from a silver surface by the ultraviolet light of wavelength \(2536\times 10^{-10}~\text{m}?\)
(Given \(h= 4.14\times 10^{-15}~\text{eVs}\) and \(c= 3\times 10^{8}~\text{m/s}\))
1. \(\approx 0.6\times 10^{6}~\text{m/s}\)
2. \(\approx 61\times 10^{3}~\text{m/s}\)
3. \(\approx 0.3\times 10^{6}~\text{m/s}\)
4. \(\approx 0.3\times 10^{5}~\text{m/s}\)
Photons with energy \(5~\text{eV}\) are incident on a cathode \(C\) in a photoelectric cell. The maximum energy of emitted photoelectrons is \(2~\text{eV}.\) When photons of energy \(6~\text{eV}\) are incident on \(C,\) no photoelectrons will reach the anode \(A,\) if the stopping potential of \(A\) relative to \(C\) is:
1. \(+3~\text{V}\)
2. \(+4~\text{V}\)
3. \(-1~\text{V}\)
4. \(-3~\text{V}\)
A photoelectric surface is illuminated successively by the monochromatic light of wavelength \(\lambda\) and \(\frac{\lambda}{2}\). If the maximum kinetic energy of the emitted photoelectrons in the second case is \(3\) times that in the first case, the work function of the surface of the mineral is:
[\(h\) = Plank’s constant, \(c\) = speed of light]
1. \(\dfrac{hc}{2\lambda}\)
2. \(\dfrac{hc}{\lambda}\)
3. \(\dfrac{2hc}{\lambda}\)
4. \(\dfrac{hc}{3\lambda}\)