Light of wavelength \(500~\text{nm}\) is incident on metal with work function \(2.28~\text{eV}\). The de-Broglie wavelength of the emitted electron is:

1. \(< 2.8\times 10^{-10}~\text{m} \) 2. \(< 2.8\times 10^{-9}~\text{m}\)
3. \(\geq 2.8\times 10^{-9}~\text{m}\) 4. \(\leq 2.8\times 10^{-12}~\text{m}\)
Subtopic:  De-broglie Wavelength |
 61%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Which of the following figures represent the variation of the particle momentum and the associated de-Broglie wavelength?

1.   2.
3.   4.  
Subtopic:  De-broglie Wavelength |
 88%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If the kinetic energy of the particle is increased to \(16\) times its previous value, the percentage change in the de-Broglie wavelength of the particle is:
1. \(25\)
2. \(75\)
3. \(60\)
4. \(50\)

Subtopic:  De-broglie Wavelength |
 74%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The wavelength \(\lambda_e\) of an electron and \(\lambda_p\) of a photon of the same energy \(E\) are related by:
1. \(\lambda_p \propto \lambda_e\)
2. \(\lambda_p \propto \sqrt{\lambda_e}\)
3. \(\lambda_p \propto \frac{1}{\sqrt{\lambda_e}}\)
4. \(\lambda_p \propto \lambda_e^2\)
Subtopic:  De-broglie Wavelength |
 61%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The de-Broglie wavelength of neutrons in thermal equilibrium at temperature \(T\) is:
1. \(\dfrac{3.08}{\sqrt{T}} ~\mathring{A}\) 2. \(\dfrac{0.308}{\sqrt{T}} ~\mathring{A}\)
3. \(\dfrac{0.0308}{\sqrt{T}} ~\mathring{A}\) 4. \(\dfrac{30.8}{\sqrt{T}} ~\mathring{A}\)
Subtopic:  De-broglie Wavelength |
From NCERT
NEET - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

An \(\alpha\text-\)particle moves in a circular path of radius \(0.83~\text{cm}\) in the presence of a magnetic field of \(0.25~\text{Wb/m}^2.\) The de-Broglie wavelength associated with the particle will be:
1. \(1~\mathring{A}\)
2. \(0.1~\mathring{A}\)
3. \(10~\mathring{A}\)
4. \(0.01~\mathring{A}\)

Subtopic:  De-broglie Wavelength |
 61%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

If the momentum of an electron is changed by \(p,\) then the de-Broglie wavelength associated with it changes by \(0.5\%.\) The initial momentum of an electron will be:
1. \(400p\)
2. \(\frac{p}{100}\)
3. \(100p\)
4. \(200p\)

Subtopic:  De-broglie Wavelength |
 70%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A radioactive nucleus of mass M emits a photon of frequency ν and the nucleus will recoil. The recoil energy will be:

1.  h2ν22Mc2

2.  zero

3.  c2M

4.  c2M

Subtopic:  De-broglie Wavelength |
 65%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Electrons used in an electron microscope are accelerated by a voltage of 25 kV. If the voltage is increased to 100 kV, then the de-Broglie wavelength associated with the electrons would:

1.  decrease by 2 times

2.  decrease by 4 times

3.  increase by 4 times

4.  increase by 2 times

Subtopic:  De-broglie Wavelength |
 75%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A particle of mass \(1\) mg has the same wavelength as an electron moving with a velocity of  \(3\times 10^{6}\) ms-1. The velocity of the particle is:
(Mass of electron = \(9.1 \times 10^{-31}\) kg)
1. \(2.7 \times 10^{-18}~\text{ms}^{-1}\)
2. \(9 \times 10^{-2}~\text{ms}^{-1}\)
3. \(3 \times 10^{-31}~\text{ms}^{-1}\)
4. \(2.7 \times 10^{-21}~\text{ms}^{-1}\)

Subtopic:  De-broglie Wavelength |
 56%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital