Consider a magnetic dipole kept in the north-south direction. Let P1, P2 Q1, Q2 be four points at the same distance from the dipole towards the north, south, east and west of the dipole respectively. The directions of the magnetic field due to the dipole are the same at:
 
a. P1 and P2
b. Q1 and Q2
c. P1 and Q1
d. P2 and Q2

Choose the correct option: 
1. (a), (b) 
2. (b), (c) 
3. (c), (d) 
4. (a), (d) 

Subtopic:  Bar Magnet |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Which of the following pairs has quantities of the same dimensions?

(a) The magnetic field \(B\) and magnetizing field intensity \(H.\)
(b) The magnetic field \(B\) and intensity of magnetization \(I.\)
(c) The magnetizing field intensity \(H\) and intensity of magnetization \(I.\)
(d) The longitudinal strain and magnetic susceptibility.


Choose the correct option from the given ones: 
1. (a) and (b) only
2. (b) and (c) only
3. (c) and (d) only
4. (a) and (d) only

Subtopic:  Magnetization & Magnetic Intensity |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Two short magnets of equal dipole moments \(\mathrm{M}\) are fastened perpendicularly at their centres (shown in the figure). The magnitude of the magnetic field at a distance \(\mathrm{d}\) from the centre on the bisector of the right angle is:

     

1. \(\frac{\mu_{\mathrm{0}}}{4 \pi} \frac{\mathrm{M}}{\mathrm{d}^{3}}\)
2. \(\frac{\mu_{0}}{4 \pi} \frac{\sqrt{2} \mathrm{M}}{\mathrm{d}^{3}}\)
3. \(\frac{\mu_{0}}{4 \pi} \frac{2\sqrt{2} \mathrm{M}}{\mathrm{d}^{3}}\)
4. \(\frac{\mu_{\mathrm{0}}}{4 \pi} \frac{\mathrm{2M}}{\mathrm{d}^{3}}\)

Subtopic:  Bar Magnet |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A circular loop carrying a current is replaced by an equivalent magnetic dipole. A point on the axis of the loop is in: 

1. end-on position 2. broadside-on position
3. both 4. none
Subtopic:  Bar Magnet |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Three identical bar magnets, each having a dipole moment \(M,\) are placed at the origin—oriented along the \(x\text-\)axis, the \(y\text-\)axis, and the \(z\text-\)axis respectively. The net magnetic moment of the dipoles has the magnitude:
1. \(3M\)
2. \(\sqrt2M\)
3. \(\sqrt3M\)
4. zero

Subtopic:  Bar Magnet |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

When a bar magnet is rotated from its position parallel to the external magnetic field \(B=10^{-3}\) T to a direction opposite to the field (anti-parallel), the work done is \(3\) J.
Then, the maximum torque experienced by this magnet in this field is:
1. \(3\times10^{-3}\) N-m
2. \(3\times10^{3}\) N-m
3. \(6\) N-m
4. \(1.5\) N-m

Subtopic:  Bar Magnet |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The magnetic field, at a point \(10\) cm away, from a short bar magnet is \(3 \times 10^{-4}\) T, when the magnet is placed in an end-on position. If the magnet is in a broadside-on position, the field will be: 
1. \(6 \times 10^{-4}\) T  2. \(1.5 \times 10^{-4}\) T 
3. \(3 \sqrt2 \times 10^{-4}\) T  4. \({\dfrac 3 {\sqrt 2}}\times 10^{-4}\)
Subtopic:  Bar Magnet |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

 A ferromagnetic material consists of domains in which the magnetic moments of the atoms are in the same direction within each domain. However, the domains are randomly oriented. A ferromagnetic material is placed in an external magnetic field. Then, 
1. all the domains grow in size.
2. all the domains shrink in size. 
3. some domains grow in size, others shrink.
4. domains rotate in the magnetic field.
Subtopic:  Magnetic Materials |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The coercive force for a certain magnet is \(3 \times 10^3 ~\text{A/m}\). This magnet is placed within a solenoid having \(40~\text{turns/cm}\). What current should be passed through the solenoid so that the magnet is demagnetized? 
1. \(0.75~\text{A}\) 2. \(75~\text{A}\)
3. \(1.33~\text{A}\) 4. \(133~\text{A}\)
Subtopic:  Magnetization & Magnetic Intensity |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A small permanent magnet is placed 'antiparallel' to a uniform magnetic field \(B.\) A null point is found at a distance \(r,\) on the axis of the magnet. Then, \(r\) is proportional to (nearly):
1. \(B^{-3}\) 2. \(B^{-2}\)
3. \(B^{-1/2}\) 4. \(B^{-1/3}\) 
Subtopic:  Bar Magnet |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital