An electric dipole of moment \(p\) is placed in an electric field of intensity \(E.\) The dipole acquires a position such that the axis of the dipole makes an angle \(\theta\) with the direction of the field. Assuming that the potential energy of the dipole to be zero when \(\theta = 90^{\circ}\), the torque and the potential energy of the dipole will respectively be:
1. \(pE\text{sin}\theta, ~-pE\text{cos}\theta\)
2. \(pE\text{sin}\theta, ~-2pE\text{cos}\theta\)
3. \(pE\text{sin}\theta, ~2pE\text{cos}\theta\)
4. \(pE\text{cos}\theta, ~-pE\text{sin}\theta\)

Subtopic:  Energy of Dipole in an External Field |
 83%
Level 1: 80%+
AIPMT - 2012
Hints
Links

An electric dipole of moment \(\vec {p} \) is lying along a uniform electric field \(\vec{E}.\) The work done in rotating the dipole by \(90^{\circ}\) is:
1. \(\sqrt{2}pE\)
2. \(\dfrac{pE}{2}\)
3. \(2pE\)
4. \(pE\)

Subtopic:  Energy of Dipole in an External Field |
 83%
Level 1: 80%+
AIPMT - 2006
Hints
Links