Three stars \(A,\) \(B,\) and \(C\) have surface temperatures \(T_A,~T_B\)and \(T_C\) respectively. Star \(A\) appears bluish, star \(B\) appears reddish and star \(C\) yellowish. Hence,


1. \(T_A>T_B>T_C\)      
2. \(T_B>T_C>T_A\)      
3. \(T_C>T_B>T_A\)      
4. \(T_A>T_C>T_B\)      
Subtopic:  Wien's Displacement Law |
 68%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The power radiated by a black body is \(P\) and it radiates maximum energy at wavelength \(\lambda_0\). Temperature of the black body is now changed so that it radiates maximum energy at the wavelength \(\frac{3}{4}\lambda_0\). The power radiated by it now becomes \(nP\). The value of \(n\) is:
1. \( \frac{3}{4} \)
2. \( \frac{4}{3} \)
3. \( \frac{256}{81} \)
4. \( \frac{81}{256}\)

Subtopic:  Wien's Displacement Law |
 65%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A black body is at a temperature of \(5760~\mathrm{K}\). The energy of radiation emitted by the body at wavelength \(250~\mathrm{nm}\) is \(U_1\), at wavelength \(500~\mathrm{nm}\) is \(U_2\) and that at \(1000~\mathrm{nm}\) is \(U_3\). Wien’s constant, \(\mathrm{b}=2.88 \times 10^6 \mathrm{~nm}-\mathrm{K}\). Which of the following is correct?
1. \( \mathrm{U}_3 =0 \)
2. \(\mathrm{U}_1 >\mathrm{U}_2 \)
3. \(\mathrm{U}_2 >\mathrm{U}_1 \)
4. \(\mathrm{U}_1 =0\)
Subtopic:  Wien's Displacement Law |
 64%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

On observing light from three different stars \(P\), \(Q\), and \(R\), it was found that the intensity of the violet colour is maximum in the spectrum of \(P\), the intensity of the green colour is maximum in the spectrum of \(R\) and the intensity of the red colour is maximum in the spectrum of \(Q\). If \(T_P\)\(T_Q\), and \(T_R\) are the respective absolute temperatures of \(P\), \(Q\), and \(R\), then it can be concluded from the above observations that:
1. \(T_P>T_Q>T_R\)
2. \(T_P>T_R>T_Q\)
3. \(T_P<T_R<T_Q\)
4. \(T_P<T_Q<T_R\)

Subtopic:  Wien's Displacement Law |
 65%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A piece of iron is heated in a flame. It first becomes dull red, then becomes reddish yellow and finally turns to white-hot. The correct explanation for the above observation is possible by using:
1. Wien’s displacement Law
2. Kirchoff’s Law
3. Newton’s Law of cooling
4. Stefan’s Law
Subtopic:  Wien's Displacement Law |
 82%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A black body at 1227 °C emits radiations with maximum intensity at a wavelength of 5000 Å. If the temperature of the body is increased by 1000 °C, the maximum intensity will be observed at:

1. 4000 Å

2. 5000 Å

3. 6000 Å

4. 3000 Å

Subtopic:  Wien's Displacement Law |
 57%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

If λm denotes the wavelength at which the radioactive emission from a black body at a temperature T K is maximum, then:

1. λm is independent of T

2. λm ∝ T

3. λm ∝ T–1

4. λm ∝ T– 4 

Subtopic:  Wien's Displacement Law |
 85%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Wien's displacement law expresses the relation between:
 

1. Wavelength corresponding to maximum energy and temperature
2. Radiation energy and wavelength
3. Temperature and wavelength
4. Colour of light and temperature
Subtopic:  Wien's Displacement Law |
 67%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A black body has a wavelength λm corresponding to maximum energy at 2000 K. Its wavelength corresponding to maximum energy at 3000 K will be:

1. 32λm

2. 23λm

3. 1681λm

4. 8116λm

Subtopic:  Wien's Displacement Law |
 80%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement