A man is walking on a horizontal road at a speed of \(4~\text{km/hr}.\) Suddenly, the rain starts vertically downwards with a speed of \(7~\text{km/hr}.\) The magnitude of the relative velocity of the rain with respect to the man is:
1. \(\sqrt{33}~\text{km/hr}\)
2. \(\sqrt{65}~\text{km/hr}\)
3. \(8~\text{km/hr}\)
4. \(4~\text{km/hr}\)
A boat is moving with a velocity \(3\hat i + 4\hat j\) with respect to ground. The water in the river is moving with a velocity\(-3\hat i - 4 \hat j\) with respect to ground. The relative velocity of the boat with respect to water is:
1. \(8\hat j\)
2. \(-6\hat i-8\hat j\)
3. \(6\hat i+8\hat j\)
4. \(5\sqrt{2}\)
The raindrops are falling with speed \(v\) vertically downwards and a man is running on a horizontal road with speed \(u.\) The magnitude of the velocity of the raindrops with respect to the man is:
1. \(v-u\)
2. \(v+u\)
3. \(\sqrt{{v}^2 + {u}^2 \over 2}\)
4. \(\sqrt{{v}^2 + {u}^2}\)
A person reaches a point directly opposite on the other bank of a flowing river while swimming at a speed of \(5~\text{m/s}\)at an angle of \(120^\circ\) with the flow. The speed of the flow must be:
1. \(2.5~\text{m/s}\)
2. \(3~\text{m/s}\)
3. \(4~\text{m/s}\)
4. \(1.5~\text{m/s}\)
A swimmer swims a distance d upstream in \(4\) s and swims an equal distance downstream in \(2\) s. The ratio of swimmer's speed in still water to the speed of river water will be:
1. | \(\frac{6}{5} \) | 2. | \(\frac{3}{1} \) |
3. | \(\frac{5}{3} \) | 4. | \(\frac{4}{3}\) |
A man standing on a road holds his umbrella at \(30^{\circ}\) with the vertical to keep the rain away. He throws the umbrella and starts running at \(10\) km/hr. He finds that raindrops are hitting his head vertically. The speed of raindrops with respect to the road will be:
1. \(10\) km/hr
2. \(20\) km/hr
3. \(30\) km/hr
4. \(40\) km/hr
A man can row a boat with a speed of \(10~\text{kmph}\) in still water. The river flows at \(6~\text{kmph}.\) If he crosses the river from one bank to the other along the shortest possible path, the time taken to cross the river of width \(1~\text{km}\) is:
1. \(\frac{1}{8}~\text{hr}\)
2. \(\frac{1}{4}~\text{hr}\)
3. \(\frac{1}{2}~\text{hr}\)
4. \(1~\text{hr}\)
When a man walks on a horizontal road with velocity \(1\) km/h, the rain appears to him coming vertically at a speed of \(2\) km/h. The actual speed of the rain with respect to ground is:
1. \(\sqrt{3}\) km/h
2. \(\sqrt{5}\) km/h
3. \(1\) km/h
4. \(3\) km/h
A man is crossing a river flowing with a velocity of \(5\) m/s. He reaches a point directly across the river at a distance of \(60\) m in \(5\) s. His velocity in still water should be:
1. \(12\) m/s
2. \(13\) m/s
3. \(5\) m/s
4. \(10\) m/s