1. | both units and dimensions |
2. | units but no dimensions |
3. | dimensions but no units |
4. | no units and no dimensions |
List-I | List-II | ||
(a) | Gravitational constant (\(G\)) | (i) | \([{L}^2 {~T}^{-2}] \) |
(b) | Gravitational potential energy | (ii) | \([{M}^{-1} {~L}^3 {~T}^{-2}] \) |
(c) | Gravitational potential | (iii) | \([{LT}^{-2}] \) |
(d) | Gravitational intensity | (iv) | \([{ML}^2 {~T}^{-2}]\) |
(a) | (b) | (c) | (d) | |
1. | (iv) | (ii) | (i) | (iii) |
2. | (ii) | (i) | (iv) | (iii) |
3. | (ii) | (iv) | (i) | (iii) |
4. | (ii) | (iv) | (iii) | (i) |
1. | wavelength of light |
2. | size of an atom |
3. | astronomical distance |
4. | height of a building |
The acceleration due to gravity on the surface of the earth is \(g=10\) m/s2. The value in km/(minute)2 is:
1. \(36\)
2. \(0.6\)
3. \(\frac{10}{6}\)
4. \(3.6\)
Which of the following equations is dimensionally correct?
\((I)~~ v=\sqrt{\dfrac{P}{\rho}}~~~~~~(II)~~v=\sqrt{\dfrac{mgl}{I}}~~~~~~(III)~~v=\dfrac{Pr^2}{2\eta l}\)
(where \(v=\) speed, \(P=\) pressure; \(r,\) \(l\) are lengths; \(\rho=\) density, \(m=\) mass, \(g=\) acceleration due to gravity, \(I=\) moment of inertia, and \(\eta=\) coefficient of viscosity)
1. | \(I~ \text{and}~II\) |
2. | \(I~ \text{and}~III\) |
3. | \(II~ \text{and}~III\) |
4. | \(I,~II~\text{and}~III\) |
The radius of a circle is stated as \(2.12\) cm. Its area should be written as:
1. | \(14\mathrm{~cm^2}\) | 2. | \(14.1\mathrm{~cm^2}\) |
3. | \(14.11\mathrm{~cm^2}\) | 4. | \(14.1124\mathrm{~cm^2}\) |
The dimensions of \(\left [ML^{-1} T^{-2} \right ]\) may correspond to:
a. | work done by a force |
b. | linear momentum |
c. | pressure |
d. | energy per unit volume |
Choose the correct option:
1. | (a) and (b) |
2. | (b) and (c) |
3. | (c) and (d) |
4. | none of the above |
\(\int \frac{\mathrm{dx}}{\sqrt{2 \mathrm{ax}-\mathrm{x}^{2}}}=\mathrm{a}^{\mathrm{n}} \sin ^{-1}\left[\frac{\mathrm{x}}{\mathrm{a}}-1\right]\)
The value of \(\mathrm{n}\) is:
1. \(0\)
2. \(-1\)
3. \(1\)
4. none of these