Photoelectrons emerging from a photocathode (work function: \(2.2~\text{eV}\)) are allowed to fall onto a gas containing hydrogen atoms in the ground state and the first excited state. What is the minimum energy of the photons incident on the photo-cathode that will cause the photoelectrons to transfer energy to the \(\mathrm{H\text-}\)atoms?
1. \(13.6~\text{eV}+2.2~\text{eV}\)
2. \((10.2+2.2)~\text{eV}\)
3. \((3.4+2.2)~\text{eV}\)
4. \((1.89+2.2)~\text{eV}\)
Subtopic:  Photoelectric Effect: Experiment |
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A photon of energy \(10.2\) eV corresponds to light of wavelength \(\lambda_0\). Due to electron transition from \(n = 2 \) to \(n = 1\) in a hydrogen atom, light of wavelength \(\lambda\) is emitted. If we take into account the recoil of atom when photon is emitted then: 
 
1. \(\lambda = \lambda_0\)
2. \(\lambda < \lambda_0\)
3. \(\lambda > \lambda_0\)
4. data is not sufficient to reach a conclusion 
Subtopic:  Photoelectric Effect: Experiment |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

\(A\) and \(B\) are two metals with threshold frequencies \(1.8\times 10^{14}\ \) Hz and \(2.2\times 10^{14}\ \) Hz. Two identical photons of energy \(0.825\) eV each are incident on them. Then, photoelectrons are emitted in:
(Take \(h=6.6\times 10^{-34}\ \) J-s)
1. \(B\) only
2. \(A\) only
3. neither \(A\) nor \(B\)
4. both \(A\) and \(B\)
Subtopic:  Photoelectric Effect: Experiment |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A metallic ball (work function: \(2\) eV) is irradiated with light consisting of photons of wavelength \(200\) nm. The ball has an initial charge, giving it a potential \(1\) V. Take the product of Planck's constant and velocity of light, hc as \(1240\) eV-nm. The final potential of the ball, when photoemission practically stops, is: 
1. \(2\)
2. \(3.2\)
3. \(4.2\)
4. \(5.2\) V
Subtopic:  Photoelectric Effect: Experiment |
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The frequency of light in a photoelectric experiment is tripled. The stopping potential will:
1. be tripled 2. be more than tripled
3. be less than tripled 4. become one-third
Subtopic:  Photoelectric Effect: Experiment |
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A fraction \(f\) of the incident energy in a beam of light of wavelength \(\lambda\) is absorbed by a metallic surface and causes photoemission. If the power of the beam falling on the surface is \(P\), then the maximum photocurrent is:
(\(e\) is electronic charge, \(h\) is Planck's constant, \(c\) is the velocity of light in vacuum)
1. \(\dfrac{\lambda{P}}{h c} f\) 2. \(\dfrac{2\lambda{P}}{h c} f\)
3. \(\dfrac{\lambda{P}}{h c} f e\) 4. \(\dfrac{2\lambda{P}}{h c} f e\)
Subtopic:  Photoelectric Effect: Experiment |
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
To view explanation, please take trial in the course below.
NEET 2026 - Target Batch - Vital
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

In the case of the photoelectric effect:

1. Since photons are absorbed as single (discrete) units, there is no significant time delay in the emission of photoelectrons.
2. According to Einstein, the critical frequency \(\nu_{0} =\dfrac{e\phi }{h},\) where \(\phi\) is the work function and \(h\) is Planck’s constant. When light with this frequency \((\nu_0)\) hits the material, it causes electrons to be ejected with the maximum possible kinetic energy.
3. Only a small fraction of the incident photons succeed in ejecting photoelectrons, while the majority are absorbed by the system as a whole and generate thermal energy.
4. The maximum kinetic energy of the electrons depends on the intensity of the radiation.
Subtopic:  Photoelectric Effect: Experiment |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The figure shows the stopping potential \(V_0\)​ (in volts), as a function of frequency \(\nu,\) for a sodium emitter. From the data plotted in the graph, what is the work function of sodium?
(Given: Planck’s constant, \(h=\) \(6.63\times 10^{-34}~\text{J-s}\) and the charge of an electron, \(e=1.6\times 10^{-19}~\text{C}\))

1. \(1.95~\text{eV}\) 2. \(2.12~\text{eV}\)
3. \(1.82~\text{eV}\) 4. \(1.66~\text{eV}\)
Subtopic:  Photoelectric Effect: Experiment |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology