The half-life of a radioactive isotope \(X\) is \(20\) years. It decays to another element \(Y\) which is stable. The two elements \(X\) and \(Y\) were found to be in the ratio \(1:7\) in a sample of a given rock. The age of the rock is estimated to be:
1. \(60\) years
2. \(80\) years
3. \(100\) years
4. \(40\) years

 82%
Level 1: 80%+
AIPMT - 2013
Hints
Links

If the nuclear radius of \(^{27}\text{Al}\) is \(3.6\) Fermi, the approximate nuclear radius of \(^{64}\text{Cu}\) in Fermi is:
1. \(2.4\)
2. \(1.2\)
3. \(4.8\)
4. \(3.6\)

Subtopic:  Nucleus |
 89%
Level 1: 80%+
AIPMT - 2012
Hints
Links

A mixture consists of two radioactive materials A1 and A2 with half-lives of 20 s and 10 s respectively. Initially, the mixture has 40 g of A1 and 160 g of A2. The amount of the two in the mixture will become equal after:

1. 60 s

2. 80 s

3. 20 s

4. 40 s

 69%
Level 2: 60%+
AIPMT - 2012
Hints

advertisementadvertisement

The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000~\text{kW}\). The mass decay of \(\mathrm{U}^{235}\) per hour is approximately equal to:
1. \(20~\mu\text{g}\)
2. \(40~\mu\text{g}\)
3. \(1~\mu\text{g}\)
4. \(10~\mu\text{g}\)

Subtopic:  Mass-Energy Equivalent |
 68%
Level 2: 60%+
AIPMT - 2011
Hints

The half-life of a radioactive element X is 50 yrs. It decays to another element Y which is stable. The two elements X and Y were found to be in the ratio of 1:15 in a sample of a given rock. The age of the rock was estimated to be:

1.  200 yr

2.  250 yr

3.  100 yr

4.  150 yr

 81%
Level 1: 80%+
AIPMT - 2011
Hints

Fusion reaction takes place at high temperature because:
 
1. atoms get ionized at high temperature
2. kinetic energy is high enough to overcome the Coulomb repulsion between nuclei
3. molecules break up at high temperature
4. nuclei break up at high temperature

Subtopic:  Nuclear Energy |
 82%
Level 1: 80%+
AIPMT - 2011
Hints

advertisementadvertisement

A nucleus \({ }_{{n}}^{{m}} \mathrm{X}\) emits one \(\alpha\text -\text{particle}\) and two \(\beta\text- \text{particle}\) The resulting nucleus is:

1. \(^{m-}{}_n^6 \mathrm{Z} \) 2. \(^{m-}{}_{n}^{4} \mathrm{X} \)
3. \(^{m-4}_{n-2} \mathrm{Y}\) 4. \(^{m-6}_{n-4} \mathrm{Z} \)
Subtopic:  Types of Decay |
 82%
Level 1: 80%+
AIPMT - 2011
Hints

The mass of a Li37 nucleus is \(0.042~\text{u}\) less than the sum of the masses of all its nucleons. The binding energy per nucleon of the Li37 nucleus is near:
1. \(4.6~\text{MeV}\)
2. \(5.6~\text{MeV}\)
3. \(3.9~\text{MeV}\)
4. \(23~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 74%
Level 2: 60%+
AIPMT - 2010
Hints

The activity of a radioactive sample is measured as N0 counts per minute at t = 0 and N0/e counts per minute at t = 5 min. The time (in minutes) at which the activity reduces to half its value is:

1. loge25

2. 5loge2

3. 5 log102

4. 5 loge2

 55%
Level 3: 35%-60%
AIPMT - 2010
Hints

advertisementadvertisement

In the nuclear decay given below:
\({ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow { }_{\mathrm{Z}+1}^{\mathrm{A}} \mathrm{Y}\rightarrow { }_{\mathrm{Z-1}}^{\mathrm{A-4}} \mathrm{B}\rightarrow { }_{\mathrm{Z-1}}^{\mathrm{A-4}} \mathrm{B}\) the particles emitted in the sequence are:
1. \(\beta, \alpha, \gamma\) 2. \( \gamma, \beta, \alpha\)
3. \(\beta, \gamma,\alpha\) 4. \(\alpha,\beta, \gamma\)
Subtopic:  Types of Decay |
 90%
Level 1: 80%+
AIPMT - 2009
Hints
Links