The efficiency of an ideal heat engine (Carnot heat engine) working between the freezing point and boiling point of water is:
1. \(26.8\%\) 2. \(20\%\)
3. \(6.25\%\) 4. \(12.5\%\)

Subtopic:  Carnot Engine |
 78%
Level 2: 60%+
NEET - 2018
Hints
Links

Given below are two statements: 
Assertion (A): Thermodynamic process in nature are irreversible. 
Reason (R): Dissipative effects cannot be eliminated.
 
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. (A) is False but (R) is True.
Subtopic:  Second Law of Thermodynamics |
Level 4: Below 35%
Hints

A refrigerator works between 40C and 300C. It is required to remove 600 calories of heat every second to keep the temperature of the refrigerated space constant. The power required will be: 
(Take, 1 cal= 4.2 Joules)
1. 23.65 W
2. 236.5 W
3. 2365 W
4. 2.365 W
 73%
Level 2: 60%+
NEET - 2016
Hints
Links

advertisementadvertisement

An ideal gas is compressed to half its initial volume using several processes. Which of the processes results in the maximum work done on the gas?
1. adiabatic
2. isobaric
3. isochoric
4. isothermal

Subtopic:  Work Done by a Gas |
 72%
Level 2: 60%+
NEET - 2015
Hints
Links

A Carnot engine, having an efficiency of η110 as a heat engine, is used as a refrigerator. If the work done on the system is \(10\) J, the amount of energy absorbed from the reservoir at a lower temperature is:
1. \(100\) J
2. \(99\) J
3. \(90\) J
4. \(1\) J

 73%
Level 2: 60%+
NEET - 2015
Hints
Links

A monoatomic gas at a pressure \(P\), having a volume \(V\), expands isothermally to a volume \(2V\) and then adiabatically to a volume \(16V\). The final pressure of the gas is: \(\left(\text{Take:}~ \gamma = \frac{5}{3} \right)\)
1. \(64P\) 2. \(32P\)
3. \(\frac{P}{64}\) 4. \(16P\)
Subtopic:  Types of Processes |
 76%
Level 2: 60%+
AIPMT - 2014
Hints
Links

advertisementadvertisement

A thermodynamic system undergoes a cyclic process \(ABCDA\) as shown in Fig. The work done by the system in the cycle is: 

1. \( P_0 V_0 \) 2. \( 2 P_0 V_0 \)
3. \(\dfrac{P_0 V_0}{2} \) 4. zero
Subtopic:  Cyclic Process |
 83%
Level 1: 80%+
AIPMT - 2014
Hints
Links

A gas is taken through the cycle \(A\rightarrow B\rightarrow C\rightarrow A,\) as shown in the figure. What is the total amount of work done by the gas?
               
1. \(1000~\text{J}\) 2. zero
3. \(-2000~\text{J}\) 4. \(2000~\text{J}\)
Subtopic:  Work Done by a Gas |
 76%
Level 2: 60%+
AIPMT - 2013
Hints
Links

The molar specific heats of an ideal gas at constant pressure and volume are denoted by \(C_P\) and \(C_V,\) respectively. If \(\gamma =\frac{C_P}{C_V}\) and \(R\) is the universal gas constant, then \(C_V\) is equal to:
1. \(\dfrac{R}{\gamma -1}\) 2. \(\dfrac{\gamma -1}{R}\)
3. \(\gamma R \) 4. \(\dfrac{\left ( \gamma -1 \right )R}{\left ( \gamma +1 \right )}\)
Subtopic:  Molar Specific Heat |
 89%
Level 1: 80%+
AIPMT - 2013
Hints
Links

advertisementadvertisement

A thermodynamic system is taken through the cycle \(ABCD\) as shown in the figure. Heat rejected by the gas during the cycle is: 
      

1. \(2 {PV}\)
2. \(4{PV}\)
3. \(\frac{1}{2}{PV}\)
4. \(PV\)

Subtopic:  Cyclic Process |
 78%
Level 2: 60%+
AIPMT - 2012
Hints
Links