Consider two nuclei of the same radioactive nuclide. One of the nuclei was created in a supernova explosion 5 billion years ago. The other was created in a nuclear reactor 5 minutes ago. The probability of decay during the next time is 
(1) Different for each nuclei

(2) Nuclei created in explosion decays first

(3) Nuclei created in the reactor decays first

(4) Independent of the time of creation

 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An \(\alpha\text -\)particle of \(5 ~\text{MeV}\) energy strikes with a nucleus of uranium at stationary at a scattering angle of \(180^\circ.\) The nearest distance up to which the \(\alpha\text -\)particle reaches the nucleus will be of the order of:
1. \(1~\mathring A     \)         
2. \(10^{- 10} ~\text{cm}\)
3. \(10^{- 12} ~\text{cm}\)
4. \(10^{- 15} ~\text{cm}\)

Subtopic:  Types of Decay |
 50%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ratio of the speed of the electrons in the ground state of hydrogen to the speed of light in vacuum is

1. 1/2                2. 2/137
3. 1/137            4. 1/237

Subtopic:  Bohr's Model of Atom |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An energy of 24.6 eV is required to remove one of the electrons from a neutral helium atom. The energy (in eV) required to remove both the electrons from a neutral helium atom is 
(a) 79.0              (b) 51.8
(c) 49.2              (d) 38.2

Subtopic:  Bohr's Model of Atom |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A hydrogen atom in its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by-  (Given Planck constant h = 6.6×10-34 J-sec)

1. 1.05×10-34 J-sec                 2. 3.16×10-34 J-sec
3. 2.11×10-34 J-sec                 4. 4.22×10-34J-sec

Subtopic:  Bohr's Model of Atom |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Hydrogen (H), deuterium (D), singly ionized helium and doubly ionized lithium all have one electron around the nucleus. Consider n =2 to n = 1 transition. The wavelengths of emitted radiations are λ1,λ2,λ3 and λ4 respectively. Then approximately 
(a) λ1=λ2=4λ3=9λ4                             (b) 4λ1=2λ2=2λ3=λ4
(c) λ1=2λ2=22λ3=32λ4                 (d) λ1=λ2=2λ3=32λ4

Subtopic:  Bohr's Model of Atom |
 79%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

In a hypothetical Bohr hydrogen, the mass of the electron is doubled. What will be the energy \(E_0\) and the radius \(r_0\) of the first orbit?
\((a_0\) is the Bohr radius) 
1. \(E_0=-27.2 ~\text{eV};~r_0={a}_0 / 2\)
2. \(E_0=-27.2 ~\text{eV}; ~r_0={a}_0\)
3. \(E_0=-13.6~\text{eV} ; ~r_0={a}_0 / 2\)
4. \(E_0=-13.6 ~\text{eV}; ~r_0={a}_0\)

Subtopic:  Bohr's Model of Atom |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A double charged lithium atom is equivalent to hydrogen whose atomic number is 3. The wavelength of required radiation for exciting electron from first to third Bohr orbit in Li++ will be (Ionisation energy of hydrogen atom is 13.6eV) 
(a) 182.51 Å                 (b) 177.17 Å
(c) 142.25 Å                 (d) 113.74 Å

Subtopic:  Bohr's Model of Atom |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ionisation potential of H-atom is  13.6 V. When it is excited from ground state by monochromatic radiations of 970.6 A0, the number of emission lines will be (according to Bohr’s theory) 
(1) 10           

(2) 8

(3) 6             

(4) 4

Subtopic:  Bohr's Model of Atom |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A neutron with velocity V strikes a stationary deuterium atom. Its kinetic energy changes by a factor of 
(1) 1516             

(2) 12

(3) 21               

(4) None of these

Subtopic:  Mass-Energy Equivalent |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints