By Huygen's wave theory of light, we cannot explain the phenomenon of:
1. | Interference |
2. | Diffraction |
3. | Photoelectric effect |
4. | Polarisation |
Two coherent monochromatic light beams of intensities I and 4I are superposed. The maximum and minimum possible intensities in the resulting beam are
(1) 5I and I
(2) 5I and 3I
(3) 9I and I
(4) 9I and 3I
If L is the coherence length and c the velocity of light, the coherent time is
(1) cL
(2)
(3)
(4)
For constructive interference to take place between two monochromatic light waves of wavelength λ, the path difference should be
(1)
(2)
(3)
(d)
Soap bubble appears coloured due to the phenomenon of:
1. Interference
2. Diffraction
3. Dispersion
4. Reflection
Which of the following statements indicates that light waves are transverse?
1. | Light waves can travel in a vacuum. |
2. | Light waves show interference. |
3. | Light waves can be polarized. |
4. | Light waves can be diffracted. |
Interference was observed in interference chamber when the air was present, now the chamber is evacuated and if the same light is used, a careful observer will see
(1) No interference
(2) Interference with bright bands
(3) Interference with dark bands
(4) Interference in which width of the fringe will be slightly increased
Two coherent sources have intensity in the ratio of . Ratio of (intensity)max/(intensity)min is:
1.
2.
3.
4.
If two waves represented by and interfere at a point, the amplitude of the resulting wave will be about
(1) 7
(2) 6
(3) 5
(4) 3.5
Two coherent sources of intensities, I1 and I2 produce an interference pattern. The maximum intensity in the interference pattern will be
(1) I1 + I2
(2)
(3) (I1 + I2)2
(4)