
| 1. | \(0.125 \pi~ \text{mV}\) | 2. | \(125 \pi ~\text{mV}\) |
| 3. | \(125 \pi~\text{V}\) | 4. | \(12.5 \pi~\text{mV}\) |
| 1. | \(\Large\frac{B\omega L^2}{8}\) | 2. | \(\Large\frac{B\omega L^2}{2}\) |
| 3. | \(\Large\frac{B\omega L^2}{4}\) | 4. | zero |
| 1. | \(BA\) and \(CD\) | 2. | \(AB\) and \(CD\) |
| 3. | \(BA\) and \(DC\) | 4. | \(AB\) and \(DC\) |
| 1. | \(3.14\) V | 2. | \(31.4\) V |
| 3. | \(62.8\) V | 4. | \(6.28\) V |
The magnetic flux linked to a circular coil of radius \(R\) is given by:
\(\phi=2t^3+4t^2+2t+5\) Wb.
What is the magnitude of the induced EMF in the coil at \(t=5\) s?
| 1. | \(108\) V | 2. | \(197\) V |
| 3. | \(150\) V | 4. | \(192\) V |
| 1. | \(10~\text{J}\) | 2. | \(2.5~\text{J}\) |
| 3. | \(20~\text{J}\) | 4. | \(5~\text{J}\) |
| 1. | \(\left[M^2LT^{-2}A^{-2}\right]\) | 2. | \(\left[MLT^{-2}A^{2}\right]\) |
| 3. | \(\left[M^{2}L^{2}T^{-2}A^{2}\right]\) | 4. | \(\left[ML^{2}T^{-2}A^{-2}\right]\) |
The current in an inductor of self-inductance \(4~\text{H}\) changes from \(4~ \text{A}\) to \(2~\text{A}\) in \(1~ \text s\). The emf induced in the coil is:
1. \(-2~\text{V}\)
2. \(2~\text{V}\)
3. \(-4~\text{V}\)
4. \(8~\text{V}\)