premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two conducting circular loops of radii \(R_1\) and \(R_2\) are placed in the same plane with their centres coinciding. If \(R_1>>R_2\), the mutual inductance \(M\) between them will be directly proportional to:

1. \(\dfrac{R_1}{R_2}\) 2. \(\dfrac{R_2}{R_1}\)
3. \(\dfrac{R^2_1}{R_2}\) 4. \(\dfrac{R^2_2}{R_1}\)

Subtopic:  Mutual Inductance |
 65%
Level 2: 60%+
NEET - 2021
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A thin semicircular conducting ring of radius \(R\) is falling with its plane vertical in a horizontal magnetic induction \(B\). At the position \(MNQ\), the speed of the ring is \(v\) and the potential difference developed across the ring is:

          

1.  Zero
2. \(B v \pi R^2 / 2\) and \(M\) is at the higher potential 
3. \(2 R B v\) and \(M\) is at the higher potential
4. \(2RBv\) and \(Q\)  is at the higher potential
Subtopic:  Motional emf |
 67%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Consider the situation shown in the figure. The wire AB is sliding on the fixed rails with a constant velocity. If the wire AB is replaced by semicircular wire, the magnitude of the induced current will 

1. Increase

2. Remain the same

3. Decrease

4. Increase or decrease depending on whether the semicircle bulges towards the resistance or away from it

Subtopic:  Motional emf |
 68%
Level 2: 60%+
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A circular loop of radius R carrying current I lies in the x-y plane with its centre at the origin. The total magnetic flux through the x-y plane is 

1. Directly proportional to I

2. Directly proportional to R

3. Directly proportional to R2

4. Zero

Subtopic:  Magnetic Flux |
 54%
Level 3: 35%-60%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A small square loop of wire of side l is placed inside a large square loop of wire of side L (L > l). The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to 

1. l / L

2. l2 / L

3. L/l

4. L2/l

Subtopic:  Mutual Inductance |
 79%
Level 2: 60%+
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A uniform but time-varying magnetic field B(t) exists in a circular region of radius a and is directed into the plane of the paper, as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region 

1. Is zero

2. Decreases as 1r

3. Increases as r

4. Decreases as 1r2

Subtopic:  Faraday's Law & Lenz Law |
 59%
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A coil of wire having finite inductance and resistance has a conducting ring placed coaxially within it. The coil is connected to a battery at time t = 0 so that a time-dependent current I1(t) starts flowing through the coil. If I2(t) is the current induced in the ring and B(t) is the magnetic field at the axis of the coil due to I1(t), then as a function of time (t > 0), the product I2 (t) B(t

1. Increases with time

2. Decreases with time

3. Does not vary with time

4. Passes through a maximum

Subtopic:  LR circuit |
Level 4: Below 35%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be 

1. Maximum in situation (A)

2. Maximum in situation (B)

3. Maximum in situation (C)

4. The same in all situations

Subtopic:  Mutual Inductance |
 75%
Level 2: 60%+
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A conducting rod of length 2l is rotating with constant angular speed ω about its perpendicular bisector. A uniform magnetic field B exists parallel to the axis of rotation. The e.m.f. induced between two ends of the rod is 

1. BΩl2

2. 12Bωl2

3. 18Bωl2

4. Zero

Subtopic:  Motional emf |
 57%
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

As shown in the figure, P and Q are two coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current IP flows in P (as seen by E) and an induced current IQ1 flows in Q. The switch remains closed for a long time. When S is opened, a current IQ2 flows in Q. Then the directions of IQ1 and IQ2 (as seen by E) are 

1. Respectively clockwise and anticlockwise

2. Both clockwise

3. Both anticlockwise

4. Respectively anticlockwise and clockwise

Subtopic:  Faraday's Law & Lenz Law |
 64%
Level 2: 60%+
Hints