In the circuit shown in the adjoining figure, the current between B and D is zero, the unknown resistance is of
1. 4 Ω
2. 2 Ω
3. 3 Ω
4. em.f. of a cell is required to find the value of X
In the circuit shown in the figure, the current flowing in 2 Ω resistance
1. 1.4 A
2. 1.2 A
3. 0.4 A
4. 1.0 A
The effective resistance between points A and B is
1. 10 Ω
2. 20 Ω
3. 40 Ω
4. None of the above three values
In the network shown in the figure, each of the resistance is equal to 2 Ω. The resistance between the points A and B is
1. 1 Ω
2. 4 Ω
3. 3 Ω
4. 2 Ω
In the Wheatstone's bridge shown, P = 2 Ω, Q = 3 Ω, R = 6 Ω and S = 8 Ω. In order to obtain balance, shunt resistance across 'S' must be [SCRA 1998]
1. 2 Ω
2. 3 Ω
3. 6 Ω
4. 8 Ω
Potential difference between the points P and Q in the electric circuit shown is
1. 4.5 V
2. 1.2 V
3. 2.4 V
4. 2.88 V
In the circuit shown in figure, the current drawn from the battery is 4A. If 10 Ω resistor is replaced by 20 Ω resistor, then current drawn from the circuit will be
1. 1 A
2. 2 A
3. 3 A
4. 4 A
1. | 2. | ||
3. | 4. |
The total current supplied to the circuit by the battery is:
1. \(1~\text{A}\)
2. \(2~\text{A}\)
3. \(4~\text{A}\)
4. \(6~\text{A}\)
In circuit shown below, the resistances are given in ohms and the battery is assumed ideal with emf equal to \(3\) volt. The voltage across the resistance \(R_4\) is:
1. \(0.4\) V
2. \(0.6\) V
3. \(1.2\) V
4. \(1.5\) V