\(5.74\) g of a substance occupies \(1.2~\text{cm}^3\). Its density by keeping the significant figures in view is:
1. \(4.7333~\text{g/cm}^3\)
2. \(3.8~\text{g/cm}^3\)
3. \(4.8~\text{g/cm}^3\)
4. \(3.7833~\text{g/cm}^3\)

Subtopic:  Dimensions |
 83%
Level 1: 80%+
Hints
Links

 The SI unit of energy is \(\mathrm{J = \text{kg}\left(m\right)^{2} s^{- 2}}\); that of speed \(v\) is \(\text{ms}^{- 1}\) and of acceleration \(a\) is \(\text{ms}^{- 2}\). Which of the formula for kinetic energy (\(K\)) given below can you rule out on the basis of dimensional arguments (m stands for the mass of the body)?
 

(a) \(K={m^{2} v^{3}}\)
(b) \(K=\dfrac{1}{2}mv^{2}\)
(c) \(K= ma\)
(d) \(K =\dfrac{3}{16}mv^{2}\)
(e) \(K = \dfrac{1}{2}mv^2+ ma\)


Choose the correct option:

1. (a), (c) & (d)
2. (b) & (d)
3. (a), (c), (d) & (e)
4. (a), (c) & (e)

Subtopic:  Dimensions |
Level 3: 35%-60%
Hints
Links

Let us consider an equation \(\dfrac{1}{2}mv^2=mgh\) where \(m\) is the mass of the body, \(v\) its velocity, \(g\) is the acceleration due to gravity and \(h\) is the height. The equation is:

1. dimensionally correct.
2. dimensionally incorrect.
3. can not be checked by dimensional analysis.
4. can't say anything.

Subtopic:  Dimensions |
 81%
Level 1: 80%+
Hints
Links

advertisementadvertisement

Consider a simple pendulum, having a bob attached to a string, that oscillates under the action of the force of gravity. Suppose that the period of oscillation of the simple pendulum depends on its length \((l)\), the mass of the bob \((m)\) and acceleration due to gravity \((g)\). Expression for its time period is:

1.  \(T   =   \dfrac{1}{2 \pi} \sqrt{\dfrac{l}{g}} \)

2.  \(T   =   2 \pi \left(\dfrac{l}{g}\right) \)

3.  \(T   =   2 \pi \sqrt{\dfrac{l}{g}} \)

4.  \(T   =   2 \pi \sqrt{\dfrac{g}{l}} \)

Subtopic:  Dimensions |
 77%
Level 2: 60%+
Hints
Links

If force \([F]\), acceleration \([A]\) and time \([T]\) are chosen as the fundamental physical quantities, then find the dimensions of energy:

1. \(\left[FAT^{-1}\right]\) 2. \(\left[FA^{-1}T\right]\)
3. \(\left[FAT\right]\) 4. \(\left[FAT^{2}\right]\)
Subtopic:  Dimensions |
 67%
Level 2: 60%+
NEET - 2021
Hints
Links

If \(E\) and \(G\) respectively, denote energy and gravitational constant, then \(\dfrac{E}{G}\) has the dimensions of:
1. \([ML^0T^0]\)
2. \([M^2L^{-2}T^{-1}]\)
3. \([M^2L^{-1}T^{0}]\)
4. \([ML^{-1}T^{-1}]\)
Subtopic:  Dimensions |
 79%
Level 2: 60%+
NEET - 2021
Hints
Links

advertisementadvertisement

Each side of a cube is measured to be \(7.203~\text{m}\). What are the total surface area and the volume respectively of the cube to appropriate significant figures? 

1. \(373.7~\text{m}^2\) and \(311.3~\text{m}^3\)
2. \(311.3~\text{m}^2\) and \(373.7~\text{m}^3\)
3. \(311.2992~\text{m}^2\) and \(373.7147~\text{m}^3\)
4. \(373.7147~\mathrm{m^2}\) and \(311.2992~\text{m}^3\)
Subtopic:  Significant Figures |
 75%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The period of oscillation of a simple pendulum is T=2πLg. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. The percentage error in is:

1.  2%

2.  3%

3.  5%

4.  0%

Subtopic:  Errors |
 58%
Level 3: 35%-60%
Hints
Links

The relative error in \(Z,\) if \(Z=\frac{A^{4}B^{1/3}}{CD^{3/2}}\) is:
1. \(\frac{\Delta A}{A}+\frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{\Delta D}{D}\)

2. \(4\frac{\Delta A}{A}+\frac{1}{3}\frac{\Delta B}{B}-\frac{\Delta C}{C}- \frac{3}{2}\frac{\Delta D}{D}\)

3. \(4\frac{\Delta A}{A}+\frac{1}{3}\frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{2}{3}\frac{\Delta D}{D}\)

4. \(4\frac{\Delta A}{A}+\frac{1}{3}\frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{3}{2}\frac{\Delta D}{D}\)

Subtopic:  Errors |
 82%
Level 1: 80%+
Hints
Links

advertisementadvertisement

Two resistors of resistances R1=100±3 ohm and R2=200±4 ohm are connected in parallel. The equivalent resistance of the parallel combination is:

1.  (300 ± 7) ohm

2.  (66.7 ± 7) ohm

3.  (66.7 ± 1.8) ohm

4.  (100 ± 1) ohm

Subtopic:  Errors |
 55%
Level 3: 35%-60%
Hints
Links