premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The equation of a wave pulse travelling along x-axis is given by y=302+x-20t2, x and y are in meters and t is in seconds. The amplitude of the wave pulse is 

1.  5 m

2.  20 m

3.  15 m

4.  30 m

Subtopic:  Wave Motion |
 54%
Level 3: 35%-60%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
The equation of a standing wave in a string is \(y = (200~\text{m})\sin\left(\frac{2\pi}{50}x\right)\cos\left(\frac{2\pi}{0.01}t\right)\) where \(x\) is in metres and \(t\) is in seconds. At the position of antinode, how many times does the distance of a string particle become \(200~\text{m}\) from its mean position in one second?
1. \(100~\text{times}\) 2. \(50~\text{times}\)
3. \(200~\text{times}\) 4. \(400~\text{times}\)
Subtopic:  Standing Waves |
Level 3: 35%-60%
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Eleven tuning forks are arranged in increasing order of frequency in such a way that any two consecutive tuning forks produce \(4\) beats per second. The highest frequency is twice that of the lowest. The highest and the lowest frequencies (in Hz) are, respectively:
1. \(100~\text{and}~50\) 2. \(44~\text{and}~22\)
3. \(80~\text{and}~40\) 4. \(72~\text{and}~30\)
Subtopic:  Beats |
 68%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Consecutive frequencies emitted from an organ pipe are \(75~\text{Hz}\), \(125~\text{Hz}\), \(175~\text{Hz}\).  The frequency of the tenth overtone will be:
1. \(275~\text{Hz}\) 2. \(175~\text{Hz}\)
3. \(525~\text{Hz}\) 4. \(575~\text{Hz}\)
Subtopic:  Standing Waves |
 61%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The sound intensity level at a point 10 m away from a point source is 20dB, then the sound level at a distance 1m from the same source would be

1. 40 dB

2. 30 dB

3. 200 dB

4. 100 dB

Subtopic:  Wave Motion |
Level 3: 35%-60%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

In the phenomenon of interference of sound by two coherent sources if difference of intensity at maxima to intensity at minima is 20dB, then the ratio of intensities of the two sources is

1.  12181

2.  119

3.  10199

4.  101

Subtopic:  Wave Motion |
 53%
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

When a sound wave travels from one medium to another, the quantity that remains unchanged is :

1.  speed

2.  amplitude

3.  frequency

4.  wavelength

Subtopic:  Wave Motion |
 82%
Level 1: 80%+
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

If a sound source of frequency n approaches an observer with velocity v/4 and the observer approaches the source with velocity v/5, then the apparent frequency heard will be-

1.  (5/8)n

2.  (8/5)n

3.  (7/5)n

4.  (5/7)n

 

 81%
Level 1: 80%+
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The equation of plane progressive wave motion is y=a sin 2π/λ(vt-x). Velocity of particle is

1. ydvdx

2. vdydx

3. -ydvdx

4. -vdydx

Subtopic:  Speed of Sound |
 52%
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
The third overtone of a closed pipe is observed to be in unison with the second overtone of an open pipe. The ratio of the lengths of the pipes is:
1. \(\frac{3}{2}\) 2. \(\frac{5}{3}\)
3. \(\frac{7}{4}\) 4. \(\frac{7}{6}\)
Subtopic:  Standing Waves |
 71%
Level 2: 60%+
Hints
Links