NCERT Section

8.3.3 Ionisation Enthalpies

 There is an increase in ionisation enthalpy along each series of the transition elements from left to right due to an increase in nuclear charge which accompanies the filling of the inner d orbitals. Table 8.2 gives the values of the first three ionisation enthalpies of the first series of transition elements. These values show that the successive enthalpies of these elements do not increase as steeply as in the case of non-transition elements. The variation in ionisation enthalpy along a series of transition elements is much less in comparison to the variation along a period of non-transition elements. The first ionisation enthalpy, in general, increases, but the magnitude of the increase in the second and third ionisation enthalpies for the successive elements, is much higher along a series.

The irregular trend in the first ionisation enthalpy of the metals of 3d series, though of little chemical significance, can be accounted for by considering that the removal of one electron alters the relative energies of 4s and 3d orbitals. You have learnt that when d-block elements form ions, ns electrons are lost before (n 1) d electrons. As we move along the period in 3d series, we see that nuclear charge increases from scandium to zinc but electrons are added to the orbital of inner subshell, i.e., 3d orbitals. These 3d electrons shield the 4s electrons from the increasing nuclear charge somewhat more effectively than the outer shell electrons can shield one another. Therefore, the atomic radii decrease less rapidly. Thus, ionization energies increase only slightly along the 3d series. The doubly or more highly charged ions have dn configurations with no 4s electrons. A general trend of increasing values of second ionisation enthalpy is expected as the effective nuclear charge increases because one d electron does not shield another electron from the influence of nuclear charge because d-orbitals differ in direction. However, the trend of steady increase in second and third ionisation enthalpy breaks for the formation of Mn2+ and Fe3+ respectively. In both the cases, ions have d5 configuration. Similar breaks occur at corresponding elements in the later transition series.

The interpretation of variation in ionisation enthalpy for an electronic configuration dn is as follows:

The three terms responsible for the value of ionisation enthalpy are attraction of each electron towards nucleus, repulsion between the electrons and the exchange energy. Exchange energy is responsible for the stabilisation of energy state. Exchange energy is approximately proportional to the total number of possible pairs of parallel spins in the degenerate orbitals. When several electrons occupy a set of degenerate orbitals, the lowest energy state corresponds to the maximum possible extent of single occupation of orbital and parallel spins (Hunds rule). The loss of exchange energy increases the stability. As the stability increases, the ionisation becomes more difficult. There is no loss of exchange energy at 6 configuration. Mn+ has 3d54s1 configuration and configuration of Cr+ is 5, therefore, ionisation enthalpy of Mn+ is lower than Cr+. In the same way, Fe2+ has 6 configuration and Mn2+ has 3d5 configuration. Hence, ionisation enthalpy of Fe2+ is lower than the Mn2+. In other words, we can say that the third ionisation enthalpy of Fe is lower than that of Mn.

The lowest common oxidation state of these metals is +2. To form the M2+ ions from the gaseous atoms, the sum of the first and second ionisation enthalpy is required in addition to the enthalpy of atomisation. The dominant term is the second ionisation enthalpy which shows unusually high values for Cr and Cu where M+ ions have the d5 and d10 configurations respectively. The value for Zn is correspondingly low as the ionisation causes the removal of 1s electron which results in the formation of stable d10 configuration. The trend in the third ionisation enthalpies is not complicated by the 4s orbital factor and shows the greater difficulty of removing an electron from the d5 (Mn2+) and d10 (Zn2+) ions. In general, the third ionisation enthalpies are quite high. Also the high values for third ionisation enthalpies of copper, nickel and zinc indicate why it is difficult to obtain oxidation state greater than two for these elements.

Although ionisation enthalpies give some guidance concerning the relative stabilities of oxidation states, this problem is very complex and not amenable to ready generalisation.