A book with many printing errors contains four different formulas for the displacement \(y\) of a particle undergoing a certain periodic motion. Rule out the wrong formulas on dimensional grounds.
(A\(y=a\sin\left(\dfrac{2\pi t}{T} \right) \)
(B) \(y=a\sin (vt) \)
(C) \(y=\dfrac{a}{T}\sin\left(\dfrac{t}{a} \right) \)
(D) \(y=(a\sqrt2) \left[\sin\left(\dfrac{2\pi t}{T} \right)+\cos \left(\dfrac{2\pi t}{T} \right) \right] \) 
where, \(a\)= maximum displacement of the particle, \(v\) = speed of the particle. \(T\) = time-period of motion.


Choose the correct option from the given ones:

1.  \(A,B\) and \(C\)  2. \(B, C\) and \(D\) 
3. \(B\) and \(C\) 4. \(B\) and \(A\)

The argument of a trigonometrical function, i.e. angle is dimensionless. Now using the principle of homogeneity of dimensions.
a2πtT=TT=dimensionless
bvt=LT-1T=L=havingdimension
cta=TLT-2=L-1T-3=havingdimension
d2πtT=TT=dimensionless
So,bandcaredimensionallywrong.