13.28 Consider the D–T reaction (deuterium-tritium fusion)

\({ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}\)

(a) Calculate the energy released in MeV in this reaction from the data:

m(\({ }_{1}^{2} \mathrm{H}\))=2.014102 u

m(\({ }_{1}^{3} \mathrm{H}\)) =3.016049 u

(b) Consider the radius of both deuterium and tritium to be approximately 2.0 fm. What is the kinetic energy needed to overcome the coulomb repulsion between the two nuclei? To what temperature must the gas be heated to initiate the reaction?

(Hint: Kinetic energy required for one fusion event =average thermal kinetic energy available with the interacting particles = 2(3kT/2); k = Boltzman’s constant, T = absolute temperature.)

 
(a)
Hint: The energy released is given by the mass defect.
Step 1: Find the Q-value of the fission reaction.
Take the D-T nuclear reaction: H12+H13H24e+n
It is given that:
Mass of H12, m1=2.014102 u
Mass of H13, m2=3.016049 u
Mass of H24, m3=4.002603 u
Mass of n01, m4=1.008665 u
Q-value of the given D-T reaction is:
Q=[m1+m2-m3]c2=[2.014102+3.016049-4.002603-1.008665] c2=[0.018883 c2]u
But 1 u=931.5 MeV/c2
Q=0.018883×931.5=17.59 MeV
(b)
Hint: The required kinetic energy should overcome the maximum potential energy of the nuclei.
Step 1: Find the maximum potential energy of the nuclei.
Radius of deuterium and tritium, r2.0 fm=2×10-15m
Distance between the two nuclei at the moment when they touch each other, 
d=r+r=4×10-15m
Charge on the deuterium nucleus=e
Charge on the tritium nucleus =e
Hence, the repulsive potential energy between the two nuclei is given as:
V=e24π0(d)
where,
0=Permittivity of free space
Of kinetic energy [KE] is needed to overcome the Coulomb repulsion between the two nuclei.
However, it is given that:
14π0=9×109Nm2 C-2
V=9×109×(1.6×10-19)24×10-15=5.76×10-14 J
=5.76×10-141.6×10-19=3.6×105 eV=360 KeV
Hence, 5.76×10-14 J or 360 KeV of kinetic energy(KE) is needed to overcome the Coulomb 
repulsion between the two nuclei.
Step 2: Find the temperature required using \(K E=2 \times \frac{3}{2} k T\).
I
t is given that:
\(K E=2 \times \frac{3}{2} k T\)
where k = Boltzmann constant = \(1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}{ }^{-2} K^{-1}\)
So, \(T=\frac{K E}{3k}\)
\(T=\frac{5.76 \times 10^{-14}}{3 \times 1.38 \times 10^{-23}}=1.39 \times 10^{9} \mathrm{~K}\)