A plane EM wave travelling along z-direction is given by E=E0 sin(kz-ωt)i^ and B=B0 sin(kz-ωt)j^. Show that:

i Evaluate E.dl over the rectangular loop 1234 shown in figure.
ii Evaluate B.ds over the surface bounded loop 1234.
iii Use equation E.dl=-Bdt to prove EoBo=c.
iv  By using B.ds =μoI+εoEdt, prove that c=1μoεo.

                

Hint: The electromagnetic wave propagates perpendicular to both the electric field and the magnetic field.
(I) Step 1: Consider the figure given below.
During the propagation of electromagnetic wave along z-axis, let electric field vector E be along x-axis and magnetic field vector B along the y-axis, i.e., E=E0i^ and B=B0i^.
Line integral of E over the closed rectangular path 1234 in the x-z plane of the figure;
E·dl=12E·dl+23E·dl+34E·dl+41E·dl
=12Edlcos90°+23Edlcos0°+34Edlcos90°+41Edlcos180°
=E0hsin(kz2-ωt)-sin(kz1-ωt)
(ii) Step 2: For evaluating B·ds, let us consider the rectangle 1234 to be madeof strips of are ds = hdz each.
B·ds=B·ds cos0°=B·ds=z1z2B0sin(kz-ωt)hdz
                                   =-B0hk[cos(kz2-ωt)-cos(kz1-ωt)]
(iii) Step 3: Given, E·dl=-edt=-ddtB·ds
Putting the values from Eqs. (i) and (ii), we get;
E0h[sin(kz2-ωt)-sin(kz1-ωt)]
=-ddtB0hk{cos(kz2-ωt)-cos(kz1-ωt)
=B0hkω[sin(kz2-ωt)-sin(kz1-ωt)]
E0=B0ωk=B0c
E0B0=c
(iv) Step 4: For evaluating B·dl, let us consider a loop 1234 in y-z plane as shown in figure given below.
B·dl=12B·dl+23B·dl+34B·dl+41B·dl
=12Bdlcos0°+23Bdlcos90°+34Bdlcos180°+41Bdlcos90°
=B0h[sin(kz1-ωt)-sin(kz2-ωt)]                   ...(iii)
Now to evaluate ϕE = E.ds, let us consider the rectangle 1234 to be made of strips of area hd2 each.
ϕE=E·ds=Edscos0°=Eds=z1zE0sin(kz1-ωt)hdz
=-E0hk[cos(kz2-ωt)-cos(kz1-ωt)]
  εdt=E0k[sin(kz1-ωt)-sin(kz2-ωt)]
In B·dl=μ0l+ε0Edt,    I=conduction current=0 in vacuum
B·dl=μ0ε0Edt
Using relations obtained in Eqs. (iii) and (iv) and simplifying, we get;
B0=Eoωμ0ε0k
E0B0ωK=1μ0ε0
But, E0B0=c and ω=ck
  c.c=1μ0ε0, therefore c=1μ0ε0