A long straight cable of length l is placed symmetrically along the z-axis and has radius a(<<l). The cable consists of a thin wire and a co-axial conducting tube. An alternating current It=Iosin2πνt flows down the central thin wire and returns along the co-axial conducting tube. The induced electric field at a distance s from the wire inside the cable is:

E(s, t)=μ0I0νcos(2πνt) lnsak^.

(i) Calculate the displacement current density inside the cable.
(ii) Integrate the displacement current density across the cross-section of the cable to find the total displacement current Id.
(iii) Compare the conduction current I0 with the displacement current I0d.

Hint: The displacement current density depends on the variation of the electric field between the plates of the capacitor.
(i) Step 1: Given, the induced electric field at a distane r from the wire inside the cable is:
E(s, t)=μ0I0νcos(2πνt) lnsak^
Now, displacement current density,
Jd=ε0dEdt=ε0ddtμ0I0νcos(2πνt) lnsak^
=ε0μ0I0νddt[cos2πνt]Insak^
=1c2I0ν2×2π[-sin2πνt]In sak^
=ν2C22πI0sin2πνt Inas k^                          lnsa=-llnas
=1λ22πI0Inassin2πνt k^ 
=2πI0λ2Inassin2πνt k^
Step 2: Id=Jdsdsdθ=s=0aJdsds×02π=s=0aJdsds×2π
=s=0a2πλ2I0logeassds×sin2πνt×2π
=2πλ2 I0s=0alnassds×sin2πνt
=2πλ2I0s=0a Inas12d(s2).sin2πνt
=a222πλ2I0sin2πνts=0aIn as.dsa2
=a242πλ2 I0sin2πνt s=0a In as2.dsa2
=-a242πλ2 I0sin2πνts=0a Insa2.dsa2
=-a242πλ2 I0sin 2πνt ×(-1)          s=0aInsa2dsa2=-1
  Id=a242πλ2I0sin2πνt
=πaλ2 I0 sin 2πνt
Step 3:The displacement current,
  Id=πaλ2I0sin2πνt = I0d sin2πνt
Here,
 I0d=πaλ2I0
 I0dI0=λ2