Two rotating bodies \(A\) and \(B\) of masses \(m\) and \(2m\) with moments of inertia \(I_A\) and \(I_B\) \((I_B>I_A)\) have equal kinetic energy of rotation. If \(L_A\) and \(L_B\) be their angular momenta respectively, then:
1. \(L_{A} = \frac{L_{B}}{2}\)
2. \(L_{A} = 2 L_{B}\)
3. \(L_{B} > L_{A}\)
4. \(L_{A} > L_{B}\)
A uniform circular disc of radius \(50~\text{cm}\) at rest is free to turn about an axis that is perpendicular to its plane and passes through its centre. It is subjected to a torque that produces a constant angular acceleration of \(2.0~\text{rad/s}^2.\) Its net acceleration in \(\text{m/s}^2\) at the end of \(2.0~\text s\) is approximately:
1. | \(7\) | 2. | \(6\) |
3. | \(3\) | 4. | \(8\) |