A pair of adjacent coils has a mutual inductance of \(1.5~\text H.\) If the current in one coil changes from \(0\) to \(20~\text A\) in \(0.5~\text s,\) what is the change of flux linkage with the other coil?

1. \(35~\text{Wb}\) 2. \(25~\text{Wb}\)
3. \(30~\text{Wb}\) 4. \(20~\text{Wb}\)
Subtopic:  Mutual Inductance |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The coefficient of mutual inductance between two coils depends upon:

1. medium between coils
2. separation between coils
3. orientation of coils
4. All of these

Subtopic:  Mutual Inductance |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Two coaxial coils are very close to each other and their mutual inductance is \(5\) mH. If a current \(50\sin(500 t)\) is passed in one of the coils, then the peak value of induced emf in the secondary coil will be:
1. \(5000\) V 2. \(500\) V
3. \(150\) V 4. \(125\) V
Subtopic:  Mutual Inductance |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Two coils have a mutual inductance of \(5\) mH. The current changes in the first coil according to the equation \(I=I_{0}\cos\omega t,\) where \(I_{0}=10~\text{A}\) and \(\omega = 100\pi ~\text{rad/s}\). The maximum value of emf induced in the second coil is:
1. \(5\pi~\text{V}\)
2. \(2\pi~\text{V}\)
3. \(4\pi~\text{V}\)
4. \(\pi~\text{V}\)

Subtopic:  Mutual Inductance |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A small square loop of wire of side \(l\) is placed inside a large square loop of side \(L\) \((L>>l)\). If the loops are coplanar and their centres coincide, the mutual inductance of the system is directly proportional to:
1. \(\dfrac{L}{l}\) 2. \(\dfrac{l}{L}\)
3. \(\dfrac{L^2}{l}\) 4. \(\dfrac{l^2}{L}\)
Subtopic:  Mutual Inductance |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital