premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A parallel beam of fast-moving electrons is incident normally on a narrow slit. A fluorescent screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statements is correct?

1. The angular width of the central maximum of the diffraction pattern will increase.
2. The angular width of the central maximum will decrease.
3. The angular width of the central maximum will be unaffected.
4. A diffraction pattern is not observed on the screen in the case of electrons.

Subtopic:  Diffraction |
 64%
Level 2: 60%+
AIPMT - 2013
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The main difference between the phenomena of interference and diffraction is that:

1. diffraction is caused by reflected waves from a source whereas interference is caused due to the refraction of waves from a source.
2. diffraction is caused due to the interaction of waves derived from the same source, whereas interference is the bending of light from the same wavefront.
3. diffraction is caused due to the interaction of light from the same wavefront, whereas the interference is the interaction of two waves derived from the same source.
4. diffraction is caused due to the interaction of light from the same wavefront whereas interference is the interaction of waves from two isolated sources.
Subtopic:  Interference vs Diffraction |
 68%
Level 2: 60%+
Hints

Red light is generally used to observe diffraction patterns from a single slit. If the blue light is used instead of red light, then the diffraction pattern:

1. will be clearer.
2. will contract.
3. will expand.
4. will not be visible.

Subtopic:  Diffraction |
 78%
Level 2: 60%+
Hints

advertisementadvertisement

What will be the angular width of central maxima in Fraunhofer diffraction when the light of wavelength \(6000~\mathring {A}\) is used and slit width is \(12\times 10^{-5}~\text{cm}\)?
1. \(2~\text{rad}\)
2. \(3~\text{rad}\)
3. \(1~\text{rad}\)
4. \(8~\text{rad}\)

Subtopic:  Diffraction |
 76%
Level 2: 60%+
Hints

In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is \(\lambda\) is \(K\), (\(\lambda\) being the wavelength of light used). The intensity at a point where the path difference is \(\frac{\lambda}{4}\) will be:
1. \(K\)
2. \(\frac{K}{4}\)
3. \(\frac{K}{2}\)
4. zero

Subtopic:  Superposition Principle |
 66%
Level 2: 60%+
AIPMT - 2014
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
In a double-slit experiment, the two slits are \(1~\text{mm}\) apart and the screen is placed \(1~\text m\) away. Monochromatic light of wavelength \(500~\text{nm}\) is used. What will be the width of each slit for obtaining ten maxima of double-slit within the central maxima of a single-slit pattern?
1. \(0.2~\text{mm}\) 2. \(0.1~\text{mm}\)
3. \(0.5~\text{mm}\) 4. \(0.02~\text{mm}\)
Subtopic:  Interference vs Diffraction |
 55%
Level 3: 35%-60%
NEET - 2015
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
At the first minimum adjacent to the central maximum of a single slit diffraction pattern, the phase difference between the Huygen’s wavelet from the edge of the slit and the wavelet from the midpoint of the slit is:
1. \(\frac{\pi}{4}~\text{radian}\)
2. \(\frac{\pi}{2}~\text{radian}\)
3. \(\pi~\text{radian}\)
4. \(\frac{\pi}{8}~\text{radian}\)
Subtopic:  Diffraction |
 65%
Level 2: 60%+
NEET - 2015
Hints

In Young's double-slit experiment, the separation \(d\) between the slits is \(2\) mm, the wavelength \(\lambda\) of the light used is \(5896~\mathring{A}\) and distance \(D\) between the screen and slits is \(100\) cm. It is found that the angular width of the fringes is \(0.20^{\circ}\). To increase the fringe angular width to \(0.21^{\circ}\) (with same \(\lambda\) and \(D\)) the separation between the slits needs to be changed to:
1. \(1.8\) mm
2. \(1.9\) mm
3. \(2.1\) mm
4. \(1.7\) mm

Subtopic:  Young's Double Slit Experiment |
 81%
Level 1: 80%+
NEET - 2018
Hints

A linear aperture whose width is \(0.02\) cm is placed immediately in front of a lens of focal length \(60\) cm. The aperture is illuminated normally by a parallel beam of wavelength \(5\times 10^{-5}\) cm. The distance of the first dark band of the diffraction pattern from the center of the screen is:
1. \(0.10~\text{cm}\)
2. \(0.25~\text{cm}\)
3. \(0.20~\text{cm}\)
4. \(0.15~\text{cm}\)

Subtopic:  Diffraction |
 75%
Level 2: 60%+
NEET - 2016
Hints

advertisementadvertisement

Two polaroids \(P_1\) and \(P_2\) are placed with their axis perpendicular to each other. Unpolarised light of intensity \(I_0\) is incident on \(P_1\). A third polaroid \(P_3\) is kept in between \(P_1\) and \(P_2\) such that its axis makes an angle \(45^{\circ}\) with that of \(P_1\). The intensity of transmitted light through \(P_2\) is:
1. \(\dfrac{I_0}{4}\) 2. \(\dfrac{I_0}{8}\)
3. \(\dfrac{I_0}{16}\) 4. \(\dfrac{I_0}{2}\)
Subtopic:  Polarization of Light |
 79%
Level 2: 60%+
NEET - 2017
Hints