The centre of the mass of \(3\) particles, \(10~\text{kg},\)  \(20~\text{kg},\) and \(30~\text{kg},\) is at \((0,0,0).\) Where should a particle with a mass of \(40~\text{kg}\) be placed so that its combined centre of mass is \((3,3,3)?\)
1. \((0,0,0)\)
2. \((7.5, 7.5, 7.5)\)
3. \((1,2,3)\)
4. \((4,4,4)\)

Subtopic:  Rotational Motion: Dynamics |
 78%
Level 2: 60%+
Hints
Links

A wheel is rotating about an axis through its centre at \(720~\text{rpm}.\) It is acted upon by a constant torque opposing its motion for \(8\) seconds to bring it to rest finally. The value of torque in \((\text{N-m })\) is:
(given \(I=\frac{24}{\pi}~\text{kg.m}^2)\) 
1. \(48\)
2. \(72\)
3. \(96\)
4. \(120\)

Subtopic:  Rotational Motion: Dynamics |
 86%
Level 1: 80%+
Hints
Links

A rigid body rotates with an angular momentum of \(L.\) If its kinetic energy is halved, the angular momentum becomes:
1. \(L\)
2. \(L/2\)
3. \(2L\)
4. \(L/\)2

Subtopic:  Rotational Motion: Dynamics |
 74%
Level 2: 60%+
Hints
Links

advertisementadvertisement

Two rotating bodies \(A\) and \(B\) of masses \(m\) and \(2m\) with moments of inertia \(I_A\) and \(I_B\) \((I_B>I_A)\) have equal kinetic energy of rotation. If \(L_A\) and \(L_B\) be their angular momenta respectively, then:
1. \(L_{A} = \frac{L_{B}}{2}\)
2. \(L_{A} = 2 L_{B}\)
3. \(L_{B} > L_{A}\)
4. \(L_{A} > L_{B}\)

Subtopic:  Rotational Motion: Dynamics |
 72%
Level 2: 60%+
NEET - 2016
Hints
Links

A rope is wrapped around a hollow cylinder with a mass of \(3~\text{kg}\) and a radius of \(40~\text{cm}.\) What is the angular acceleration of the cylinder if the rope is pulled with a force \(30~\text N?\)
1. \(0.25~\text{rad/s}^2\) 
2. \(25~\text{rad/s}^2\)
3. \(5~\text{m/s}^2\)
4. \(25~\text{m/s}^2\)
Subtopic:  Rotational Motion: Dynamics |
 71%
Level 2: 60%+
Hints
Links

A solid cylinder of mass \(50~\text{kg}\) and radius \(0.5~\text{m}\) is free to rotate about the horizontal axis. A massless string is wound around the cylinder with one end attached to it and the other end hanging freely. The tension in the string required to produce an angular acceleration of \(2~\text{rev/s}^2\) will be:
1. \(25~\text N\) 
2. \(50~\text N\) 
3. \(78.5~\text N\) 
4. \(157~\text N\) 

Subtopic:  Rotational Motion: Dynamics |
 53%
Level 3: 35%-60%
AIPMT - 2014
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

When a uniform rod of length \(l,\) hinged at one end is released from rest while making an angle \(\theta\) with the vertical, what will be the acceleration of its free end at that instant?

1. \(\dfrac{3 g \sin \theta}{4} \) 2. \(\dfrac{3 g \cos \theta}{2} \)
3. \(\dfrac{3 g \sin \theta}{2} \) 4. \(\dfrac{3 g \cos \theta}{4}\)
Subtopic:  Rotational Motion: Dynamics |
 59%
Level 3: 35%-60%
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A uniform rod of length \(1~\text m\) and mass \(2~\text {kg}\) is suspended by two vertical inextensible strings as shown in the following figure. The tension \(T\) (in newtons) in the left string at the instant when the right string snaps is:
\((g = 10~\text{m/s}^ 2 ).\)
             
1. \(2.5~\text N\)
2. \(5~\text N\)
3. \(7.5~\text N\)
4. \(10~\text N\)

Subtopic:  Rotational Motion: Dynamics |
Level 3: 35%-60%
Hints
Links