In the following circuit, the battery \(E_1\) has an emf of \(12\) volts and zero internal resistance while the battery \(E\) has an emf of \(2\) volts. If the galvanometer \(G\) reads zero, then the value of the resistance \(X\) in ohms is:

1. \(10\) 2. \(100\)
3. \(500\) 4. \(200\)
Subtopic:  Kirchoff's Voltage Law |
 73%
Level 2: 60%+
Hints
Links

Twelve wires of equal resistance \(R\) are connected to form a cube. The effective resistance between two diagonal ends \(A\) and \(E\) will be:

1. \(\dfrac{5 R}{6}\) 2. \(\dfrac{6 R}{5}\)
3. \(12 R\) 4. \(3 R\)
Subtopic:  Kirchoff's Voltage Law |
 70%
Level 2: 60%+
Hints
Links

The potential difference \(V_{A}-V_{B}\) between the points \({A}\) and \({B}\) in the given figure is:
     

1. \(-3~\text{V}\) 2. \(+3~\text{V}\)
3. \(+6~\text{V}\) 4. \(+9~\text{V}\)

Subtopic:  Kirchoff's Voltage Law |
 80%
Level 1: 80%+
NEET - 2016
Hints
Links

advertisementadvertisement

See the electrical circuit shown in this figure. Which of the following is a correct equation for it?
                

1. \(\varepsilon_1-(i_1+i_2)R-i_1r_1=0\)
2. \(\varepsilon_2-i_2r_2-\varepsilon_1-i_1r_1=0\)
3. \(-\varepsilon_2-(i_1+i_2)R+i_2r_2=0\)
4. \(\varepsilon_1-(i_1+i_2)R+i_1r_1=0\)

Subtopic:  Kirchoff's Voltage Law |
 72%
Level 2: 60%+
AIPMT - 2009
Hints
Links

The current through the \(5~\Omega\) resistor is:

1. \(3.2~\text A\) 2. \(2.8~\text A\)
3. \(0.8~\text A\) 4. \(0.2~\text A\)
Subtopic:  Kirchoff's Voltage Law |
 69%
Level 2: 60%+
Hints
Links

For the circuit given below, Kirchhoff's loop rule for the loop \(BCDEB\) is given by the equation:

         

1. \(-{i}_2 {R}_2+{E}_2-{E}_3+{i}_3{R}_1=0\)
2. \({i}_2{R}_2+{E}_2-{E}_3-{i}_3 {R}_1=0\)
3. \({i}_2 {R}_2+{E}_2+{E}_3+{i}_3 {R}_1=0\)
4. \(-{i}_2 {R}_2+{E}_2+{E}_3+{i}_3{R}_1=0\)
Subtopic:  Kirchoff's Voltage Law |
 71%
Level 2: 60%+
NEET - 2020
Hints
Links

advertisementadvertisement

A battery of emf \(10\) V is connected to resistance as shown in the figure below. The potential difference \(V_{A} - V_{B}\)
between the points \(A\) and \(B\) is:

 

1. \(-2\) V

2. \(2\) V

3. \(5\) V

4. \(\frac{20}{11}~\text{V}\)

Subtopic:  Kirchoff's Voltage Law |
 68%
Level 2: 60%+
PMT - 1994
Hints
Links

Consider the circuit shown in the figure below. The current \(I_3\) is equal to:

       

1. \(5\) A

2. \(3\) A

3. \(-3\) A

4. \(\frac{-5}{6}\) A

Subtopic:  Kirchoff's Voltage Law |
 67%
Level 2: 60%+
Hints
Links

\({A, B}~\text{and}~{C}\) are voltmeters of resistance \(R,\) \(1.5R\) and \(3R\) respectively as shown in the figure above. When some potential difference is applied between \({X}\) and \({Y},\) the voltmeter readings are \({V}_{A},\) \({V}_{B}\) and \({V}_{C}\) respectively. Then:

        

1. \({V}_{A} ={V}_{B}={V}_{C}\) 2. \({V}_{A} \neq{V}_{B}={V}_{C}\)
3. \({V}_{A} ={V}_{B}\neq{V}_{C}\) 4. \({V}_{A} \ne{V}_{B}\ne{V}_{C}\)

Subtopic:  Kirchoff's Voltage Law |
 65%
Level 2: 60%+
NEET - 2015
Hints
Links

advertisementadvertisement

What is the ratio of currents flowing in the resistors \(x\) and \(y\) of resistance \(10~\Omega\) each?
               
1. \(1\)

2. \(0.5\)

3. \(1.5\)

4. \(2.0\)

Subtopic:  Kirchoff's Voltage Law |
 63%
Level 2: 60%+
Hints
Links