In a regular octagon \({ABCDEFGH},\) all sides are equal in length. The position vector of point \(A\) with respect to the center \(O\) of the octagon is given by: \(\overrightarrow{{AO}}=2 \hat{{i}}+3 \hat{{j}}-4 \hat{{k}}.\)
What is the value of the vector sum: \(\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}+\overrightarrow{{AE}}+\overrightarrow{{AF}}+\overrightarrow{{AG}}+\overrightarrow{{AH}} ~\text{?}\)

1. |
\( -16 \hat{i}-24 \hat{j}+32 \hat{k} \) |
2. |
\( 16 \hat{i}+24 \hat{j}-32 \hat{k} \) |
3. |
\( 16 \hat{i}+24 \hat{j}+32 \hat{k} \) |
4. |
\(16 \hat{i}-24 \hat{j}+32 \hat{k} \) |