According to Wein's law:
1. λmT= constant                 

2. λmT= constant

3. Tλm= constant                 

4. T+λm= constant

Subtopic:  Wien's Displacement Law |
 92%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A black body has a maximum wavelength at a temperature of \(2000~\text K.\) Its corresponding wavelength at temperatures of \(3000~\text K\) will be: 

1. \(\dfrac{3}{2} \lambda_m\) 2. \(\dfrac{2}{3} \lambda_m\)
3. \(\dfrac{4}{9} \lambda_m\) 4. \(\dfrac{9}{4} \lambda_m\)
Subtopic:  Wien's Displacement Law |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A black body at \(200~\text{K}\) is found to emit maximum energy at a wavelength of \(14~\mu \text{m}\). When its temperature is raised to \(1000~\text{K}\), the wavelength at which maximum energy is emitted will be:

1. \(14~\mu\text{m}\) 2. \(70~\mu\text{m}\)
3. \(2.8~\mu\text{m}\) 4. \(2.8~\text{nm}\)
Subtopic:  Wien's Displacement Law |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

What is the ratio of the temperatures \(T_{1}\)and\(T_{2}\) in the following graph?

          

1. \(3:2\)
2. \(2:1\)
3. \(4:3\)
4. \(1:1\)

Subtopic:  Wien's Displacement Law |
 94%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A piece of iron is heated in a flame. If it becomes dull red first, then becomes reddish yellow, and finally turns to white hot, the correct explanation for the above observation is possible by using:

1. Stefan's law 2. Wien's displacement law
3. Kirchhoff's law 4. Newton's law of cooling
Subtopic:  Wien's Displacement Law |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If \(\lambda_m\) is the wavelength, corresponding to which the radiant intensity of a block is at its maximum and its absolute temperature is \(T,\) then which of the following graphs correctly represents the variation of \(T?\)

1. 2.
3. 4.
Subtopic:  Wien's Displacement Law |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Three stars \(A,\) \(B,\) and \(C\) have surface temperatures \(T_A,~T_B\) and \(T_C\) respectively. Star \(A\) appears bluish, star \(B\) appears reddish and star \(C\) yellowish. Hence:
1. \(T_A>T_B>T_C\)
2. \(T_B>T_C>T_A\)
3. \(T_C>T_B>T_A\)
4. \(T_A>T_C>T_B\)
Subtopic:  Wien's Displacement Law |
 70%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The plots of intensity versus wavelength for three black bodies at temperatures \(T_1,T_2\) and \(T_3\) respectively are as shown. Their temperatures are such that:
           

1. \({T}_1>{T}_2>{T}_3 \) 2. \({T}_1>{T}_3>{T}_2 \)
3. \({T}_2>{T}_3>{T}_1 \) 4. \({T}_3>{T}_2>{T}_1\)
Subtopic:  Wien's Displacement Law |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The energy distribution E with the wavelength λ for the black body radiation at temperature T Kelvin is shown in the figure. As the temperature is increased the maxima will:
     

1. Shift towards left and become higher
2. Rise high but will not shift
3. Shift towards right and become higher
4. Shift towards left and the curve will become broader

Subtopic:  Wien's Displacement Law |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A black body is at a temperature of 5760 K. The energy of radiation emitted by the body at a wavelength of 250 nm is U1, at a wavelength of 500 nm is U2 and that at 1000 nm is U3. Given Wien's constant b=2.88×106 nm-K, which of the following is correct?
1. U3=0       
2. U1>U2
3. U2>U1     
4. U1=0

Subtopic:  Wien's Displacement Law |
 53%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital