A moving block having mass \(m\) collides with another stationary block having a mass of \(4m.\) The lighter block comes to rest after the collision. When the initial velocity of the lighter block is \(v,\) then the value of the coefficient of restitution \((e)\) will be:
1. \(0.5\)
2. \(0.25\)
3. \(0.8\)
4. \(0.4\)

Subtopic:  Collisions |
 78%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A body initially at rest and sliding along a frictionless track from a height \(h\) (as shown in the figure) just completes a vertical circle of diameter \(\mathrm{AB}= D.\) The height \({h}\) is equal to:
        
1. \({3\over2}D\)
2. \(D\)
3. \({7\over4}D\)
4. \({5\over4}D\)

Subtopic:  Gravitational Potential Energy |
 70%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Consider a drop of rainwater having a mass of \(1~\text{gm}\) falling from a height of \(1~\text{km}\). It hits the ground with a speed of \(50~\text{m/s}\). Take \(g\)  as constant with a value \(10~\text{m/s}^2.\) The work done by the
(i) gravitational force and the
(ii) resistive force of air is:

1. \((\text{i})~1.25~\text{J};\) \((\text{ii})~-8.25~\text{J}\)
2. \((\text{i})~100~\text{J};\) \((\text{ii})~8.75~\text{J}\)
3. \((\text{i})~10~\text{J};\) \((\text{ii})~-8.75~\text{J}\)
4. \((\text{i})~-10~\text{J};\) \((\text{ii})~-8.75~\text{J}\)

Subtopic:  Work Energy Theorem |
 68%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two identical balls \(\mathrm{A}\) and \(\mathrm{B}\) having velocities of \(0.5~\text{m/s}\) and \(-0.3~\text{m/s}\) respectively collide elastically in one dimension. The velocities of \(\mathrm{B}\) and \(\mathrm{A}\) after the collision respectively will be:
1. \(-0.5 ~\text{m/s}~\text{and}~0.3~\text{m/s}\) 
2. \(0.5 ~\text{m/s}~\text{and}~-0.3~\text{m/s}\)
3. \(-0.3 ~\text{m/s}~\text{and}~0.5~\text{m/s}\)
4. \(0.3 ~\text{m/s}~\text{and}~0.5~\text{m/s}\)

Subtopic:  Collisions |
 57%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A body of mass 1 kg begins to move under the action of a time dependent force \(F = 2 t\) \(\hat{i} + 3 t^{2}\ \hat{j}\) N, where \(\hat{i}\) and \(\hat{j}\) are unit vectors along X and Y axis, What power will be developed by the force at the time (t) ?

(a) \(\left(2 t^{2} + 4 t^{4}\right) W\)         

(b) \(\left(2 t^{3} + 3 t^{4}\right) W\)

(c) \(\left(2 t^{3} + 3 t^{5}\right) W\)         

(d) \(\left(2 t + 3 t^{3}\right) W\)

Subtopic:  Power |
 68%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?

(1) 2gR

(2) 3gR

(3) 5gR

(4) gR
 

Subtopic:  Work Energy Theorem |
 77%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A bullet of mass \(10\) g moving horizontal with a velocity of \(400\) m/s strikes a wood block of mass \(2\) kg which is suspended by light inextensible string of length \(5\) m. As a result, the centre of gravity of the block is found to rise a vertical distance of \(10\) cm. The speed of the bullet after it emerges horizontally from the block will be:

1. \(100\) m/s 2. \(80\) m/s
3. \(120\) m/s 4. \(160\) m/s
Subtopic:  Collisions |
 59%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two identical balls \(A\) and \(B\) having velocities of \(0.5~\text{m/s}\) and \(-0.3~\text{m/s}\), respectively, collide elastically in one dimension. The velocities of \(B\) and \(A\) after the collision, respectively, will be:

1. \(-0.5~\text{m/s}~\text{and}~0.3~\text{m/s}\)
2. \(0.5~\text{m/s}~\text{and}~-0.3~\text{m/s}\)
3. \(-0.3~\text{m/s}~\text{and}~0.5~\text{m/s}\)
4. \(0.3~\text{m/s}~\text{and}~0.5~\text{m/s}\)
Subtopic:  Collisions |
 60%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A body of mass \(1\) kg begins to move under the action of a time-dependent force \(\vec{F}=\left(2 t \hat{i}+3 t^2 \hat{j}\right) \) N, where \(\hat{i}\) and \(\hat{j}\) are unit vectors along the \(\mathrm{X}\) and \(\mathrm{Y}\)-axis. What power will be developed by the force at the time (\(t\))?
1. \(\left(2 t^2+4 t^4\right) \) W
2. \(\left(2 t^3+3 t^3\right) \) W
3. \(\left(2 t^3+3 t^5\right)\) W
4. \(\left(2 t^3+3 t^4\right) \) W
Subtopic:  Power |
 79%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

What is the minimum velocity with which a body of mass \(m\) must enter a vertical loop of radius \(R\) so that it can complete the loop?
1. \(\sqrt{2 g R}\)
2. \(\sqrt{3 g R}\)
3. \(\sqrt{5 g R}\)
4. \(\sqrt{ g R}\)

Subtopic:  Gravitational Potential Energy |
 85%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh