A particle executes simple harmonic motion with a time period \(T.\) It starts at its equilibrium position at \(t=0.\) How will the graph of its kinetic energy \((KE)\) versus time \((t)\) look like?
| 1. |  | 
| 2. |  | 
| 3. |  | 
| 4. |  | 
| 1. | The total energy of the system is \(\dfrac{1}{2}m\omega^2A^2+\dfrac{1}{2}\dfrac{q^2E^2}{k}.\) | 
| 2. | The new equilibrium position is at a distance \(\dfrac{2qE} {k}\) from \(x = 0.\) | 
| 3. | The new equilibrium position is at a distance \(\dfrac{qE} {2k}\) from \(x = 0.\) | 
| 4. | The total energy of the system is \(\dfrac{1}{2}m\omega^2A^2-\dfrac{1}{2}\dfrac{q^2E^2}{k}.\) | 
| 1. |  | 2. | |
| 3. | 4. | 
| 1. |  | 2. |  | 
| 3. |  | 4. |  | 
| 1. | \(\left({{{A}\over{2}}}\right)\) | 2. | \(\left({{{A}\over{\sqrt{2}}}}\right)\) | 
| 3. | \(\left({{{A}\over{2\sqrt{2}}}}\right)\) | 4. | \(\left({{{A}\over{4}}}\right)\) | 
 
| 1. | \( { K.E. }=\frac{k A^2}{8} \\ { P.E. }=\frac{3 k A^2}{8} \\ v=\frac{A}{3} \sqrt{\frac{k}{m}} \) | 2. | \({ K.E. }=\frac{3 k A^2}{8} \\ { P.E. }=\frac{k A^2}{8} \\ v=\frac{A}{2} \sqrt{\frac{3 k}{m}} \) | 
| 3. | \({ K.E. }=\frac{3 k A^2}{8} \\ { P.E. }=\frac{k A^2}{4} \\ v=A \sqrt{\frac{3 k}{m}} \) | 4. | \({ K.E. }=\frac{k A^2}{4} \\ { P.E. }=\frac{3 k A^2}{8} \\ v=\frac{A}{4} \sqrt{\frac{3 k}{m}} \) |