1. | \(2 ~\text{NC}^{-1}\) | 2. | \(1~\text{NC}^{-1}\) |
3. | \(0.5~\text{NC}^{-1}\) | 4. | zero |
1. | \(\dfrac{Eqm}{t}\) | 2. | \(\dfrac{E^2q^2t^2}{2m}\) |
3. | \(\dfrac{2E^2t^2}{qm}\) | 4. | \(\dfrac{Eq^2m}{2t^2}\) |
Twelve point charges each of charge \(q~\text C\) are placed at the circumference of a circle of radius \(r~\text{m}\) with equal angular spacing. If one of the charges is removed, the net electric field (in \(\text{N/C}\)) at the centre of the circle is:
(\(\varepsilon_0\text- \)permittivity of free space)
1. | \(\dfrac{13q}{4\pi \varepsilon_0r^2}\) | 2. | zero |
3. | \(\dfrac{q}{4\pi \varepsilon_0r^2}\) | 4. | \(\dfrac{12q}{4\pi \varepsilon_0r^2}\) |
A spherical conductor of radius \(10~\text{cm}\) has a charge of \(3.2 \times 10^{-7}~\text{C}\) distributed uniformly. What is the magnitude of the electric field at a point \(15~\text{cm}\) from the centre of the sphere?
\(\left(\frac{1}{4\pi \varepsilon _0} = 9\times 10^9~\text{N-m}^2/\text{C}^2\right)\)
1. \(1.28\times 10^{5}~\text{N/C}\)
2. \(1.28\times 10^{6}~\text{N/C}\)
3. \(1.28\times 10^{7}~\text{N/C}\)
4. \(1.28\times 10^{4}~\text{N/C}\)
A hollow metal sphere of radius \(R\) is uniformly charged. The electric field due to the sphere at a distance \(r\) from the centre:
1. | decreases as \(r\) increases for \(r<R\) and for \(r>R\). |
2. | increases as \(r\) increases for \(r<R\) and for \(r>R\). |
3. | is zero as \(r\) increases for \(r<R\), decreases as \(r\) increases for \(r>R\). |
4. | is zero as \(r\) increases for \(r<R\), increases as \(r\) increases for \(r>R\). |