| 1. | \(a=-\dfrac{1}{2},~ \alpha=-\dfrac{1}{2}, ~\beta=-1, ~\gamma=\dfrac{1}{2},~ \delta=\dfrac{7}{2}\) |
| 2. | \(a=\dfrac{1}{2},~\alpha=\dfrac{1}{2},~ \beta=-\dfrac{1}{2}, ~\gamma=\dfrac{1}{2},~ \delta=\dfrac{7}{2}\) |
| 3. | \(a=\dfrac{1}{2}, ~\alpha=\dfrac{1}{2}, ~\beta=-1, ~\gamma=+1, ~\delta=\dfrac{3}{2}\) |
| 4. | \(a=-\dfrac{1}{2}, ~\alpha=-\dfrac{1}{2}, ~\beta=-1, ~\gamma=-\dfrac{1}{2}, ~\delta=\dfrac{5}{2}\) |
| 1. | \([{M}^{3/2}{L}^{1/2}{T}^{-3}]\) | 2. | \([M^{1/2}LT^{-3}]\) |
| 3. | \([{M}^2{L}^{1/2}{T}^{-4}]\) | 4. | \([ML^{2}T^{-4}]\) |
| 1. | \(\alpha t / \beta \) | 2. | \(\alpha \beta t \) |
| 3. | \(\alpha \beta / t \) | 4. | \(\beta t / \alpha\) |
| 1. | angular momentum |
| 2. | coefficient of thermal conductivity |
| 3. | torque |
| 4. | gravitational constant |
| 1. | both units and dimensions |
| 2. | units but no dimensions |
| 3. | dimensions but no units |
| 4. | no units and no dimensions |
If force \([F]\), acceleration \([A]\) and time \([T]\) are chosen as the fundamental physical quantities, then find the dimensions of energy:
| 1. | \(\left[FAT^{-1}\right]\) | 2. | \(\left[FA^{-1}T\right]\) |
| 3. | \(\left[FAT\right]\) | 4. | \(\left[FAT^{2}\right]\) |
The energy required to break one bond in DNA is \(10^{-20}~\text{J}\). This value in eV is nearly:
1. \(0.6\)
2. \(0.06\)
3. \(0.006\)
4. \(6\)
A physical quantity of the dimensions of length that can be formed out of \(c, G,~\text{and}~\dfrac{e^2}{4\pi\varepsilon_0}\)is:
(\(c\) is the velocity of light, \(G\) is the universal constant of gravitation and \(e\) is charge)
| 1. | \(c^2\left[G \dfrac{e^2}{4 \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\) | 2. | \(\dfrac{1}{c^2}\left[\dfrac{e^2}{4 G \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\) |
| 3. | \(\dfrac{1}{c} G \dfrac{e^2}{4 \pi \varepsilon_0}\) | 4. | \(\dfrac{1}{c^2}\left[G \dfrac{e^2}{4 \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\) |