The two-dimensional motion of a particle, described by \(\vec{r}=(\hat{i}+2\hat{j}) A~\text{cos}(\omega t) \) is a/an:
(A) parabolic path
(B) elliptical path
(C) periodic motion
(D) simple harmonic motion

Choose the correct answer from the options given below:
1. (B), (C), and (D) only
2. (A), (B), and (C) only
3. (A), (C), and (D) only
4. (C) and (D) only
Subtopic:  Types of Motion |
 53%
Level 3: 35%-60%
NEET - 2024
Hints

Identify the function which represents a non-periodic motion?
1. \(e^{-\omega t} \) 2. \(\text{sin}\omega t\)
3. \(\text{sin}\omega t+\text{cos}\omega t\) 4. \(\text{sin}(\omega t+\pi/4) \)
Subtopic:  Types of Motion |
 83%
Level 1: 80%+
NEET - 2022
Hints

From the given functions, identify the function which represents a periodic motion:
1. \(e^{\omega t}\) 2. \(\text{log}_e(\omega t)\)
3. \(\text{sin}\omega t+ \text{cos}\omega t\) 4. \(e^{-\omega t}\)
Subtopic:  Types of Motion |
 89%
Level 1: 80%+
NEET - 2020
Hints

advertisementadvertisement

A particle of mass \(m\) oscillates along the \({x}\text-\)axis according to the equation \(x = a {\sin} \omega t.\) The nature of the graph between momentum and displacement of the particle is:
1. circle
2. hyperbola
3. ellipse
4. a straight line passing through the origin
Subtopic:  Types of Motion |
 61%
Level 2: 60%+
NEET - 2013
Hints

If \(x = 5 \mathrm {sin }\left(\pi t+ {\dfrac {\pi} 3}\right)~\text m\) represents the motion of a particle executing simple harmonic motion, the amplitude and time period of motion, respectively are:
1. \(5~\text m, 2~\text s\) 2. \(5~\text {cm}, 1~\text s\)
3. \(5~\text m, 1~\text s\) 4. \(5~\text {cm}, 2~\text s\)
Subtopic:  Simple Harmonic Motion |
 73%
Level 2: 60%+
NEET - 2024
Hints

The displacement-time \((x\text-t)\) graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at \(t=2\) s is:
1. \(-\dfrac{\pi^2}{16} ~\text{ms}^{-2}\) 2. \(\dfrac{\pi^2}{8}~ \text{ms}^{-2}\)
3. \(-\dfrac{\pi^2}{8} ~\text{ms}^{-2}\) 4. \(\dfrac{\pi^2}{16} ~\text{ms}^{-2}\)
Subtopic:  Simple Harmonic Motion |
 67%
Level 2: 60%+
NEET - 2023
Hints

advertisementadvertisement

The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
1. \(\dfrac{3\pi}{2}\text{rad}\)
2. \(\dfrac{\pi}{2}\text{rad}\)
3. zero
4. \(\pi ~\text{rad}\)

Subtopic:  Simple Harmonic Motion |
 75%
Level 2: 60%+
NEET - 2020
Hints

The displacement of a particle executing simple harmonic motion is given by, \(y = A_{0} + A\sin \omega t+ B \cos\omega t. \)
Then the amplitude of its oscillation is given by:
1. \(A + B\)
2. \(A_{0}+\sqrt{A^{2} + B^{2}} \)
3. \(\sqrt{A^{2} + B^{2}}\)
4. \(\sqrt{A_{0}^{2}+\left( A + B \right)^{2}}\)
Subtopic:  Simple Harmonic Motion |
 60%
Level 2: 60%+
NEET - 2019
Hints

The average velocity of a particle executing SHM in one complete vibration is:
1. zero
2. \(\dfrac{A \omega}{2}\)
3. \(A \omega\)
4. \(\dfrac{A \left(\omega\right)^{2}}{2}\)

Subtopic:  Simple Harmonic Motion |
 73%
Level 2: 60%+
NEET - 2019
Hints

advertisementadvertisement

A particle executes linear simple harmonic motion with amplitude of \(3~\text{cm}\). When the particle is at \(2~\text{cm}\) from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is:
1. \(\dfrac{\sqrt5}{2\pi}\)
2. \(\dfrac{4\pi}{\sqrt5}\)
3. \(\dfrac{4\pi}{\sqrt3}\)
4. \(\dfrac{\sqrt5}{\pi}\)

Subtopic:  Simple Harmonic Motion |
 78%
Level 2: 60%+
NEET - 2017
Hints